Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation

Monica Yabal, Silvia Brambillasca, Paolo Soffientini, Emanuela Pedrazzini, Nica Borgese, Marja Makarow

Research output: Contribution to journalArticlepeer-review

Abstract

C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b5, carrying an N-glycosylation site in its C-terminal domain (b5-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b5-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b5-Nglyc translocation. The kinetics of translocation were faster for b5-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b5-Nglyc. Similarly, only low ATP concentrations (below 1 μM), in addition to cytosolic protein(s), were required for in vitro translocation of b5-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b5-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.

Original languageEnglish
Pages (from-to)3489-3496
Number of pages8
JournalJournal of Biological Chemistry
Volume278
Issue number5
DOIs
Publication statusPublished - Jan 31 2003

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation'. Together they form a unique fingerprint.

Cite this