TY - CHAP
T1 - Tr1 cells and the counter-regulation of immunity
T2 - Natural mechanisms and therapeutic applications
AU - Roncarolo, Maria Grazia
AU - Gregori, Silvia
AU - Bacchetta, Rosa
AU - Battaglia, Manuela
PY - 2014
Y1 - 2014
N2 - T regulatory Type 1 (Tr1) cells are adaptive T regulatory cells characterized by the ability to secrete high levels of IL-10 and minimal amounts of IL-4 and IL-17. Recently, CD49b and LAG-3 have been identified as Tr1-cell-specific biomarkers in mice and humans. Tr1 cells suppress T-cell- and antigen-presenting cell- (APC) responses primarily via the secretion of IL-10 and TGF-β. In addition, Tr1 cells release granzyme B and perforin and kill myeloid cells. Tr1 cells inhibit T cell responses also via cell-contact dependent mechanisms mediated by CTLA-4 or PD-1, and by disrupting the metabolic state of T effector cells via the production of the ectoenzymes CD39 and CD73. Tr1 cells were first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplant. Since their discovery, Tr1 cells have been proven to be important in maintaining immunological homeostasis and preventing T-cell-mediated diseases. Furthermore, the possibility to generate and expand Tr1 cells in vitro has led to their utilization as cellular therapy in humans. In this chapter we summarize the unique and distinctive biological properties of Tr1 cells, the well-known and newly discovered Tr1-cell biomarkers, and the different methods to induce Tr1 cells in vitro and in vivo. We also address the role of Tr1 cells in infectious diseases, autoimmunity, and transplant rejection in different pre-clinical disease models and in patients. Finally, we highlight the pathological settings in which Tr1 cells can be beneficial to prevent or to cure the disease.
AB - T regulatory Type 1 (Tr1) cells are adaptive T regulatory cells characterized by the ability to secrete high levels of IL-10 and minimal amounts of IL-4 and IL-17. Recently, CD49b and LAG-3 have been identified as Tr1-cell-specific biomarkers in mice and humans. Tr1 cells suppress T-cell- and antigen-presenting cell- (APC) responses primarily via the secretion of IL-10 and TGF-β. In addition, Tr1 cells release granzyme B and perforin and kill myeloid cells. Tr1 cells inhibit T cell responses also via cell-contact dependent mechanisms mediated by CTLA-4 or PD-1, and by disrupting the metabolic state of T effector cells via the production of the ectoenzymes CD39 and CD73. Tr1 cells were first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplant. Since their discovery, Tr1 cells have been proven to be important in maintaining immunological homeostasis and preventing T-cell-mediated diseases. Furthermore, the possibility to generate and expand Tr1 cells in vitro has led to their utilization as cellular therapy in humans. In this chapter we summarize the unique and distinctive biological properties of Tr1 cells, the well-known and newly discovered Tr1-cell biomarkers, and the different methods to induce Tr1 cells in vitro and in vivo. We also address the role of Tr1 cells in infectious diseases, autoimmunity, and transplant rejection in different pre-clinical disease models and in patients. Finally, we highlight the pathological settings in which Tr1 cells can be beneficial to prevent or to cure the disease.
UR - http://www.scopus.com/inward/record.url?scp=84906871905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906871905&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-43492-5-3
DO - 10.1007/978-3-662-43492-5-3
M3 - Chapter
C2 - 25004813
SN - 9783662434918
VL - 380
T3 - Current Topics in Microbiology and Immunology
SP - 39
EP - 68
BT - Current Topics in Microbiology and Immunology
ER -