TY - JOUR
T1 - The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion
AU - Raimondi, Manuela T.
AU - Moretti, Matteo
AU - Cioffi, Margherita
AU - Giordano, Carmen
AU - Boschetti, Federica
AU - Laganà, Katia
AU - Pietrabissa, Riccardo
PY - 2006
Y1 - 2006
N2 - Bioreactors allowing direct-perfusion of culture medium through tissue-engineered constructs may overcome diffusion limitations associated with static culturing, and may provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed on cells within scaffolds is directly dependent on scaffold microstructure and on bioreactor configuration. Aim of this study is to investigate optimal shear stress ranges and to quantitatively predict the levels of hydrodynamic shear imposed to cells during the experiments. Bovine articular chondrocytes were seeded on polyestherurethane foams and cultured for 2 weeks in a direct perfusion bioreactor designed to impose 4 different values of shear level at a single flow rate (0.5 ml/min). Computational fluid dynamics (CFD) simulations were carried out on reconstructions of the scaffold obtained from micro-computed tomography images. Biochemistry analyses for DNA and sGAG were performed, along with electron microscopy. The hydrodynamic shear induced on cells within constructs, as estimated by CFD simulations, ranged from 4.6 to 56 mPa. This 12-fold increase in the level of applied shear stress determined a 1.7-fold increase in the mean content in DNA and a 2.9-fold increase in the mean content in sGAG. In contrast, the mean sGAG/DNA ratio showed a tendency to decrease for increasing shear levels. Our results suggest that the optimal condition to favour sGAG synthesis in engineered constructs, at least at the beginning of culture, is direct perfusion at the lowest level of hydrodynamic shear. In conclusion, the presented results represent a first attempt to quantitatively correlate the imposed hydrodynamic shear level and the invoked biosynthetic response in 3D engineered chondrocyte systems.
AB - Bioreactors allowing direct-perfusion of culture medium through tissue-engineered constructs may overcome diffusion limitations associated with static culturing, and may provide flow-mediated mechanical stimuli. The hydrodynamic stress imposed on cells within scaffolds is directly dependent on scaffold microstructure and on bioreactor configuration. Aim of this study is to investigate optimal shear stress ranges and to quantitatively predict the levels of hydrodynamic shear imposed to cells during the experiments. Bovine articular chondrocytes were seeded on polyestherurethane foams and cultured for 2 weeks in a direct perfusion bioreactor designed to impose 4 different values of shear level at a single flow rate (0.5 ml/min). Computational fluid dynamics (CFD) simulations were carried out on reconstructions of the scaffold obtained from micro-computed tomography images. Biochemistry analyses for DNA and sGAG were performed, along with electron microscopy. The hydrodynamic shear induced on cells within constructs, as estimated by CFD simulations, ranged from 4.6 to 56 mPa. This 12-fold increase in the level of applied shear stress determined a 1.7-fold increase in the mean content in DNA and a 2.9-fold increase in the mean content in sGAG. In contrast, the mean sGAG/DNA ratio showed a tendency to decrease for increasing shear levels. Our results suggest that the optimal condition to favour sGAG synthesis in engineered constructs, at least at the beginning of culture, is direct perfusion at the lowest level of hydrodynamic shear. In conclusion, the presented results represent a first attempt to quantitatively correlate the imposed hydrodynamic shear level and the invoked biosynthetic response in 3D engineered chondrocyte systems.
KW - Biosynthesis
KW - Cartilage
KW - Computational fluid dynamics
KW - Mechanobiology
KW - Porous biomaterials
KW - Simulation
KW - Tissue engineering
UR - http://www.scopus.com/inward/record.url?scp=33747146367&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33747146367&partnerID=8YFLogxK
M3 - Article
C2 - 16912395
AN - SCOPUS:33747146367
SN - 0006-355X
VL - 43
SP - 215
EP - 222
JO - Biorheology
JF - Biorheology
IS - 3-4
ER -