TY - JOUR
T1 - Serum withdrawal after embryoid body formation does not impair cardiomyocyte development from mouse embryonic stem cells
AU - Testa, Gianluca
AU - Tarantino, Carolina
AU - Parisi, Silvia
AU - Galizia, Gianluigi
AU - Passaro, Fabiana
AU - Della-Morte, David
AU - Abete, Pasquale
AU - Rengo, Franco
AU - Salvatore, Francesco
AU - Pastore, Lucio
PY - 2011/3
Y1 - 2011/3
N2 - Background aims: Procedures for cardiomyocyte differentiation of mouse embryonic stem cells (mESCs) utilize different amounts of serum. Because the serum composition is unknown, unambiguous characterization of the differentiation process is biased. All reported serum-free protocols used for compound testing provide serum throughout the differentiation process. We report on an embryoid body (EB)-based procedure for cardiomyocyte differentiation of mESCs in which serum is provided only in the earliest step (hanging drop, 0-2 days). Methods. To assess cardiomyocyte differentiation, we generated an mESCs clone that expressed green fluorescence protein (GFP) under the control of the myosin light chain 2v (MLC2v) promoter. To define the lowest serum concentration required for efficient induction of cardiomyocyte differentiation, EBs were formed in presence of 5% (S5), 10% (S10) and 15% (S15) serum until day 2, then switched to a serum-free medium. Results. Analysis of cardiac-specific transcripts on day 6 of differentiation showed that 10% (S10) was the minimum amount of serum for efficient continuation of cultures under serum-free conditions. Spontaneously beating foci were detected in 90.0 ± 5.5% of S10 EBs on day 7 of differentiation, and cardiomyocyte markers were expressed from day 8 of differentiation (MLC2v-driven GFP; α-myosin heavy chain). Dose-response curves to isoproterenol showed that the beating rate increased by 113.0 ± 39.4%, with a concentration for half-maximal effect (EC50) of 25.7 nm. Conclusions. The development of functional cardiomyocytes from mESCs is not affected by serum withdrawal after EBs formation. This culture system represents a new model for cardiomyocyte differentiation of mESCs to assess the effects of compounds on the process of cardiomyogenesis.
AB - Background aims: Procedures for cardiomyocyte differentiation of mouse embryonic stem cells (mESCs) utilize different amounts of serum. Because the serum composition is unknown, unambiguous characterization of the differentiation process is biased. All reported serum-free protocols used for compound testing provide serum throughout the differentiation process. We report on an embryoid body (EB)-based procedure for cardiomyocyte differentiation of mESCs in which serum is provided only in the earliest step (hanging drop, 0-2 days). Methods. To assess cardiomyocyte differentiation, we generated an mESCs clone that expressed green fluorescence protein (GFP) under the control of the myosin light chain 2v (MLC2v) promoter. To define the lowest serum concentration required for efficient induction of cardiomyocyte differentiation, EBs were formed in presence of 5% (S5), 10% (S10) and 15% (S15) serum until day 2, then switched to a serum-free medium. Results. Analysis of cardiac-specific transcripts on day 6 of differentiation showed that 10% (S10) was the minimum amount of serum for efficient continuation of cultures under serum-free conditions. Spontaneously beating foci were detected in 90.0 ± 5.5% of S10 EBs on day 7 of differentiation, and cardiomyocyte markers were expressed from day 8 of differentiation (MLC2v-driven GFP; α-myosin heavy chain). Dose-response curves to isoproterenol showed that the beating rate increased by 113.0 ± 39.4%, with a concentration for half-maximal effect (EC50) of 25.7 nm. Conclusions. The development of functional cardiomyocytes from mESCs is not affected by serum withdrawal after EBs formation. This culture system represents a new model for cardiomyocyte differentiation of mESCs to assess the effects of compounds on the process of cardiomyogenesis.
KW - Cardiomyocyte differentiation
KW - embryonic stem cells
KW - serum
UR - http://www.scopus.com/inward/record.url?scp=79951698577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951698577&partnerID=8YFLogxK
U2 - 10.3109/14653249.2010.520311
DO - 10.3109/14653249.2010.520311
M3 - Article
C2 - 20873992
AN - SCOPUS:79951698577
SN - 1465-3249
VL - 13
SP - 350
EP - 356
JO - Cytotherapy
JF - Cytotherapy
IS - 3
ER -