Selecting appropriate empirical antibiotic regimens for paediatric bloodstream infections: Application of a Bayesian decision model to local and pooled antimicrobial resistance surveillance data

Julia A. Bielicki, Mike Sharland, Alan P. Johnson, Katherine L. Henderson, David A. Cromwell, C. Berger, S. Esposito, E. Danieli, R. Tenconi, L. Folgori, P. Bernaschi, B. Santiago, J. Saavedra, E. Cercenado, A. Brett, F. Rodrigues, M. Cizman, J. Jazbec, J. Babnik, Maja PavčnikM. Pirš, M. Mueller Premrov, M. Lindner, M. Borte, N. Lippmann, V. Schuster, A. Thürmer, F. Lander, J. Elias, J. Liese, A. Durst, S. Weichert, C. Schneider, M. Hufnagel, A. Rack, J. Hübner, F. Dubos, M. Lagree, R. Dessein, P. Tissieres, G. Cuzon, V. Gajdos, F. Doucet-Populaire, V. Usonis, V. Gurksniene, G. Bernatoniene, M. Tsolia, N. Spyridis, E. Lebessi, A. Doudoulakakis, I. Lutsar, S. Kõljalg, T. Schülin, A. Warris

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'Selecting appropriate empirical antibiotic regimens for paediatric bloodstream infections: Application of a Bayesian decision model to local and pooled antimicrobial resistance surveillance data'. Together they form a unique fingerprint.

Medicine & Life Sciences