TY - JOUR
T1 - Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature
AU - Klement, Wendy
AU - Garbelli, Rita
AU - Zub, Emma
AU - Rossini, Laura
AU - Tassi, Laura
AU - Girard, Benoit
AU - Blaquiere, Marine
AU - Bertaso, Federica
AU - Perroy, Julie
AU - de Bock, Frederic
AU - Marchi, Nicola
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Background: Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. Methods: In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. Results: A disarray of NG2DsRed+ pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1+ microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67+) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. Conclusions: These results indicate the occurrence of pericytosis during seizures and introduce a pericyte-microglial mediated mechanism of blood-brain barrier dysfunction in epilepsy.
AB - Background: Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. Methods: In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. Results: A disarray of NG2DsRed+ pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1+ microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67+) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. Conclusions: These results indicate the occurrence of pericytosis during seizures and introduce a pericyte-microglial mediated mechanism of blood-brain barrier dysfunction in epilepsy.
KW - Blood-brain barrier
KW - Epilepsy
KW - Inflammation
KW - Microglia
KW - Pericytes
UR - http://www.scopus.com/inward/record.url?scp=85042191390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042191390&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2018.02.002
DO - 10.1016/j.nbd.2018.02.002
M3 - Article
AN - SCOPUS:85042191390
SN - 0969-9961
VL - 113
SP - 70
EP - 81
JO - Neurobiology of Disease
JF - Neurobiology of Disease
ER -