TY - JOUR
T1 - Role of NMDA receptor in homocysteine-induced activation of Mitogen-Activated Protein Kinase and Phosphatidyl Inositol 3-Kinase pathways in cultured human vascular smooth muscle cells
AU - Doronzo, Gabriella
AU - Russo, Isabella
AU - Del Mese, Paola
AU - Viretto, Michela
AU - Mattiello, Luigi
AU - Trovati, Mariella
AU - Anfossi, Giovanni
PY - 2010/2
Y1 - 2010/2
N2 - Introduction: Exposure of vascular smooth muscle cells (VSMC) to homocysteine, at concentrations associated with an increased risk of cardiovascular events, enhances synthesis and secretion of Matrix Metalloproteinase-2 (MMP-2), which is involved in atherosclerotic plaque instabilization. This effect was prevented by inhibitors of Mitogen Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3-K) pathways, allowing to hypothesize that homocysteine activates both these pathways, likely via a receptor-mediated mechanism. One possible receptor is N-methyl-D-aspartate receptor (NMDAr), which is expressed in VSMC and is involved in homocysteine effects in other cell types. Materials and Methods: VSMC exposed to DL-homocysteine or NMDA (100 μmol/L for both; 5 min-8 hours), were investigated by measuring: i) phosphorylation of ERK1/2, p38MAPK (signaling molecules of MAPK pathway) and Akt and p70S6K (signaling molecules of PI3-K pathway) by western blot; ii) synthesis and secretion of MMP-2 (western blot); iii) activation of MMP-2 (gelatin zimography). To evaluate NMDAr involvement in the homocysteine effects, the experiments were repeated in the presence of a non-competitive NMDAr-antagonist MK-801 (50 μmol/L) or L-glycine (10 μmol/L), which inhibits NMDAr function by promoting its internalization. Results: DL-homocysteine and NMDA time-dependently increased: i) the phosphorylation of ERK1/2, p38 MAPK, Akt and p70S6K (ANOVA, p <0.0001); ii) the synthesis, secretion and activation of MMP-2. DL-homocysteine and NMDA effects were prevented by VSMC pre-incubation with MK-801 or high L-glycine concentrations. Conclusions: In human VSMC homocysteine-at concentrations associated with increased cardiovascular risk- activates MAPK and PI3-K pathways and MMP-2 synthesis and secretion through NMDA receptor, a potential mechanism involved in intracellular signaling in response to homocysteine in VSMC.
AB - Introduction: Exposure of vascular smooth muscle cells (VSMC) to homocysteine, at concentrations associated with an increased risk of cardiovascular events, enhances synthesis and secretion of Matrix Metalloproteinase-2 (MMP-2), which is involved in atherosclerotic plaque instabilization. This effect was prevented by inhibitors of Mitogen Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3-K) pathways, allowing to hypothesize that homocysteine activates both these pathways, likely via a receptor-mediated mechanism. One possible receptor is N-methyl-D-aspartate receptor (NMDAr), which is expressed in VSMC and is involved in homocysteine effects in other cell types. Materials and Methods: VSMC exposed to DL-homocysteine or NMDA (100 μmol/L for both; 5 min-8 hours), were investigated by measuring: i) phosphorylation of ERK1/2, p38MAPK (signaling molecules of MAPK pathway) and Akt and p70S6K (signaling molecules of PI3-K pathway) by western blot; ii) synthesis and secretion of MMP-2 (western blot); iii) activation of MMP-2 (gelatin zimography). To evaluate NMDAr involvement in the homocysteine effects, the experiments were repeated in the presence of a non-competitive NMDAr-antagonist MK-801 (50 μmol/L) or L-glycine (10 μmol/L), which inhibits NMDAr function by promoting its internalization. Results: DL-homocysteine and NMDA time-dependently increased: i) the phosphorylation of ERK1/2, p38 MAPK, Akt and p70S6K (ANOVA, p <0.0001); ii) the synthesis, secretion and activation of MMP-2. DL-homocysteine and NMDA effects were prevented by VSMC pre-incubation with MK-801 or high L-glycine concentrations. Conclusions: In human VSMC homocysteine-at concentrations associated with increased cardiovascular risk- activates MAPK and PI3-K pathways and MMP-2 synthesis and secretion through NMDA receptor, a potential mechanism involved in intracellular signaling in response to homocysteine in VSMC.
KW - Homocysteine
KW - Matrix metalloproteinase
KW - Mitogen-Activated Protein Kinase
KW - N-methyl-D-aspartate
KW - Phosphatidylinositol 3-kinase
KW - Vascular Smooth Muscle Cells
UR - http://www.scopus.com/inward/record.url?scp=76449098645&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76449098645&partnerID=8YFLogxK
U2 - 10.1016/j.thromres.2009.08.015
DO - 10.1016/j.thromres.2009.08.015
M3 - Article
C2 - 19766294
AN - SCOPUS:76449098645
SN - 0049-3848
VL - 125
JO - Thrombosis Research
JF - Thrombosis Research
IS - 2
ER -