TY - JOUR
T1 - Relationship between DNA methylation and mutational patterns induced by a sequence selective minor groove methylating agent
AU - Kelly, Jack D.
AU - Inga, Alberto
AU - Chen, Fa Xian
AU - Dande, Prasad
AU - Shah, Dharini
AU - Monti, Paola
AU - Aprile, Anna
AU - Burns, Philip A.
AU - Scott, Gina
AU - Abbondandolo, Angelo
AU - Gold, Barry
AU - Fronza, Gilberto
PY - 1999/6/25
Y1 - 1999/6/25
N2 - Me-lex, a methyl sulfonate ester appended to a neutral N- methylpyrrolecarboxamide-based dipeptide, was synthesized to preferentially generate N3-methyladenine (3-MeA) adducts which are expected to be cytotoxic rather than mutagenic DNA lesions. In the present study, the sequence specificity for DNA alkylation by Me-lex was determined in the p53 cDNA through the conversion of the adducted sites into single strand breaks and sequencing gel analysis. In order to establish the mutagenic and lethal properties of Me-lex lesions, a yeast expression vector harboring the human wild-type p53 cDNA was treated in vitro with Me-lex, and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results showed that: 1) more than 99% of the lesions induced by Me-lex are 3-MeA; 2) the co-addition of distamycin quantitatively inhibited methylation at all minor groove sites; 3) Me-lex selectively methylated A's that are in, or immediately adjacent to, the lex equilibrium binding sites; 4) all but 6 of the 33 independent mutations were base pair substitutions, the majority of which (17/33; 52%) were AT-targeted; 5) AT → TA transversions were the predominant mutations observed (13/33; 39%); 6) 13 out of 33 (39%) independent mutations involved a single lex-binding site encompassing positions A600-602 and 9 occurred at position 602 which is a real Me-lex mutation hotspot (n = 9, p <10-6, Poisson's normal distribution). A hypothetical model for the interpretation of mutational events at this site is proposed. The present work is the first report on mutational properties of Me-lex. Our results suggest that 3-MeA is not only a cytotoxic but also a premutagenic lesion which exerts this unexpected property in a strict sequence-dependent manner.
AB - Me-lex, a methyl sulfonate ester appended to a neutral N- methylpyrrolecarboxamide-based dipeptide, was synthesized to preferentially generate N3-methyladenine (3-MeA) adducts which are expected to be cytotoxic rather than mutagenic DNA lesions. In the present study, the sequence specificity for DNA alkylation by Me-lex was determined in the p53 cDNA through the conversion of the adducted sites into single strand breaks and sequencing gel analysis. In order to establish the mutagenic and lethal properties of Me-lex lesions, a yeast expression vector harboring the human wild-type p53 cDNA was treated in vitro with Me-lex, and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results showed that: 1) more than 99% of the lesions induced by Me-lex are 3-MeA; 2) the co-addition of distamycin quantitatively inhibited methylation at all minor groove sites; 3) Me-lex selectively methylated A's that are in, or immediately adjacent to, the lex equilibrium binding sites; 4) all but 6 of the 33 independent mutations were base pair substitutions, the majority of which (17/33; 52%) were AT-targeted; 5) AT → TA transversions were the predominant mutations observed (13/33; 39%); 6) 13 out of 33 (39%) independent mutations involved a single lex-binding site encompassing positions A600-602 and 9 occurred at position 602 which is a real Me-lex mutation hotspot (n = 9, p <10-6, Poisson's normal distribution). A hypothetical model for the interpretation of mutational events at this site is proposed. The present work is the first report on mutational properties of Me-lex. Our results suggest that 3-MeA is not only a cytotoxic but also a premutagenic lesion which exerts this unexpected property in a strict sequence-dependent manner.
UR - http://www.scopus.com/inward/record.url?scp=0033603438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033603438&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.26.18327
DO - 10.1074/jbc.274.26.18327
M3 - Article
C2 - 10373436
AN - SCOPUS:0033603438
SN - 0021-9258
VL - 274
SP - 18327
EP - 18334
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 26
ER -