TY - JOUR
T1 - Quantitative MRI Harmonization to Maximize Clinical Impact: The RIN-Neuroimaging Network
AU - Nigri, Anna
AU - Ferraro, Stefania
AU - Gandini Wheeler-Kingshott, Claudia A M
AU - Tosetti, Michela
AU - Redolfi, Alberto
AU - Forloni, Gianluigi
AU - D’Angelo, Egidio Ugo
AU - Aquino, Domenico
AU - Biagi, Laura
AU - Bosco, Paolo
AU - Carne, Irene
AU - De Francesco, Silvia
AU - Demichelis, Greta
AU - Gianeri, Ruben
AU - Laganà, Maria Marcella
AU - Micotti, Edoardo
AU - Napolitano, Antonio
AU - Savini, Giovanni
AU - Palesi, Fulvia
AU - Pirastru, Alice
AU - Savini, Giovanni
AU - Alberici, Elisa
AU - Amato, Carmelo
AU - Arrigoni, Filippo Silvio Aldo
AU - Baglio, Francesca
AU - Bozzali, Marco
AU - Castellano, Antonella
AU - Cavaliere, Carlo
AU - Contarino, Valeria Elisa
AU - Ferrazzi, Giulio
AU - Gaudino, Simone
AU - Marino, Silvia
AU - Manzo, Vittorio
AU - Pavone, Luigi
AU - Politi, Letterio Salvatore
AU - Roccatagliata, Luca
AU - Rognone, Elisa
AU - Rossi, Andrea
AU - Tonon, Caterina
AU - Lodi, Raffaele
AU - Tagliavini, Fabrizio
AU - Bruzzone, Maria Grazia
PY - 2022/4/14
Y1 - 2022/4/14
N2 - Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures.Keywords: QSM; diffusion MRI; fMRI; harmonization; multisite; neuroimaging; quantitative MRI.
AB - Neuroimaging studies often lack reproducibility, one of the cardinal features of the scientific method. Multisite collaboration initiatives increase sample size and limit methodological flexibility, therefore providing the foundation for increased statistical power and generalizable results. However, multisite collaborative initiatives are inherently limited by hardware, software, and pulse and sequence design heterogeneities of both clinical and preclinical MRI scanners and the lack of benchmark for acquisition protocols, data analysis, and data sharing. We present the overarching vision that yielded to the constitution of RIN-Neuroimaging Network, a national consortium dedicated to identifying disease and subject-specific in-vivo neuroimaging biomarkers of diverse neurological and neuropsychiatric conditions. This ambitious goal needs efforts toward increasing the diagnostic and prognostic power of advanced MRI data. To this aim, 23 Italian Scientific Institutes of Hospitalization and Care (IRCCS), with technological and clinical specialization in the neurological and neuroimaging field, have gathered together. Each IRCCS is equipped with high- or ultra-high field MRI scanners (i.e., ≥3T) for clinical or preclinical research or has established expertise in MRI data analysis and infrastructure. The actions of this Network were defined across several work packages (WP). A clinical work package (WP1) defined the guidelines for a minimum standard clinical qualitative MRI assessment for the main neurological diseases. Two neuroimaging technical work packages (WP2 and WP3, for clinical and preclinical scanners) established Standard Operative Procedures for quality controls on phantoms as well as advanced harmonized quantitative MRI protocols for studying the brain of healthy human participants and wild type mice. Under FAIR principles, a web-based e-infrastructure to store and share data across sites was also implemented (WP4). Finally, the RIN translated all these efforts into a large-scale multimodal data collection in patients and animal models with dementia (i.e., case study). The RIN-Neuroimaging Network can maximize the impact of public investments in research and clinical practice acquiring data across institutes and pathologies with high-quality and highly-consistent acquisition protocols, optimizing the analysis pipeline and data sharing procedures.Keywords: QSM; diffusion MRI; fMRI; harmonization; multisite; neuroimaging; quantitative MRI.
M3 - Article
SN - 1664-2295
JO - Front. Neurol.
JF - Front. Neurol.
ER -