TY - JOUR
T1 - Probiotic characteristics and in vitro compatibility of a combination of Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536
AU - Toscano, Marco
AU - De Vecchi, Elena
AU - Gabrieli, Arianna
AU - Zuccotti, Gian Vincenzo
AU - Drago, Lorenzo
PY - 2015/6/26
Y1 - 2015/6/26
N2 - The consumption of probiotic-based products has risen greatly in recent decades. Due to their probiotic characteristics, microorganisms such as lactobacilli and bifidobacteria are in daily use in the production of food supplements. In the present study, three bifidobacterial strains (Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536) were tested for growth compatibility, resistance to antimicrobial agents, antibacterial activity against pathogens, resistance to gastric acidity, bile salt hydrolysis and adhesion to the human intestinal epithelial cell line HT29. All of these strains were resistant to gentamycin, but none showed in vitro growth incompatibility or the presence of known resistance determinants. B. breve M-16 V had the best probiotic characteristics and, indeed, was the only strain possessing antibacterial activity against Escherichia coli and Klebsiella pneumoniae. All strains were resistant to simulated gastric juice, while only B. longum subsp. longum BB536 and B. breve M-16 V showed a bile salt hydrolytic activity. Interestingly, a strong adhesion to HT29 cells was observed in all Bifidobacterium strains. In conclusion, B. breve M-16 V, B. longum subsp. longum BB536 and B. longum subsp. infantis M-63 showed several promising characteristics as probiotic strains.
AB - The consumption of probiotic-based products has risen greatly in recent decades. Due to their probiotic characteristics, microorganisms such as lactobacilli and bifidobacteria are in daily use in the production of food supplements. In the present study, three bifidobacterial strains (Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536) were tested for growth compatibility, resistance to antimicrobial agents, antibacterial activity against pathogens, resistance to gastric acidity, bile salt hydrolysis and adhesion to the human intestinal epithelial cell line HT29. All of these strains were resistant to gentamycin, but none showed in vitro growth incompatibility or the presence of known resistance determinants. B. breve M-16 V had the best probiotic characteristics and, indeed, was the only strain possessing antibacterial activity against Escherichia coli and Klebsiella pneumoniae. All strains were resistant to simulated gastric juice, while only B. longum subsp. longum BB536 and B. breve M-16 V showed a bile salt hydrolytic activity. Interestingly, a strong adhesion to HT29 cells was observed in all Bifidobacterium strains. In conclusion, B. breve M-16 V, B. longum subsp. longum BB536 and B. longum subsp. infantis M-63 showed several promising characteristics as probiotic strains.
KW - Bifidobacteria
KW - Food supplement
KW - Probiotic
KW - Safety
UR - http://www.scopus.com/inward/record.url?scp=84943015073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943015073&partnerID=8YFLogxK
U2 - 10.1007/s13213-014-0953-5
DO - 10.1007/s13213-014-0953-5
M3 - Article
AN - SCOPUS:84943015073
SN - 1590-4261
VL - 65
SP - 1079
EP - 1086
JO - Annals of Microbiology
JF - Annals of Microbiology
IS - 2
ER -