TY - JOUR
T1 - Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3β-dependent cell-cell mechanical adhesion
AU - Boca, Manila
AU - D'Amato, Lisa
AU - Distefano, Gianfranco
AU - Polishchuk, Roman S.
AU - Germino, Gregory G.
AU - Boletta, Alessandra
PY - 2007/10
Y1 - 2007/10
N2 - Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1-/- mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell-cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis.
AB - Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1-/- mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and β-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated β-catenin through activation of GSK3β. Expression of a nondegradable form of β-catenin in PC-1 MDCK cells restores strong cell-cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis.
UR - http://www.scopus.com/inward/record.url?scp=34948834648&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34948834648&partnerID=8YFLogxK
U2 - 10.1091/mbc.E07-02-0142
DO - 10.1091/mbc.E07-02-0142
M3 - Article
C2 - 17671167
AN - SCOPUS:34948834648
SN - 1059-1524
VL - 18
SP - 4050
EP - 4061
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
IS - 10
ER -