Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant

Rosellina M. Mancina, Niina Matikainen, Cristina Maglio, Sanni Söderlund, Nina Lundbom, Antti Hakkarainen, Raffaela Rametta, Enrico Mozzi, Silvia Fargion, Luca Valenti, Stefano Romeo, Marja Riitta Taskinen, Jan Borén

Research output: Contribution to journalArticlepeer-review


Context: Nonalcoholic fatty liver disease (NAFLD) is an emerging epidemic disease characterized by increased hepatic fat, due to an imbalance between synthesis and removal of hepatic lipids. In particular, increased hepatic de novo lipogenesis (DNL) is a key feature associated with NAFLD. The genetic variations I148M in PNPLA3 and E167K in TM6SF2 confer susceptibility to NAFLD. Objective: Here we aimed to investigate the contribution of DNL to liver fat accumulation in the PNPLA3 I148M or TM6SF2 E167K genetic determinants of NAFLD. Patients and Methods: The PNPLA3 I148M and TM6SF2 E167K were genotyped in two well-characterized cohorts of Europeans. In the first cohort (Helsinki cohort; n = 88), we directly quantified hepatic DNL using deuterated water. In the second cohort (Milan cohort; n = 63), we quantified the hepatic expression of SREBP1c that we have found previously associated with increased fat content. Liver fat was measured by magnetic resonance proton spectroscopy in the Helsinki cohort, and by histological assessment of liver biopsies in the Milan cohort. Results: PNPLA3 148M was associated with lower DNL and expression of the lipogenic transcription factor SREBP1c despite substantial increased hepatic fat content. Conclusions: Our data show a paradoxical dissociation between hepatic DNL and hepatic fat content due to the PNPLA3 148M allele indicating that increased DNL is not a key feature in all individuals with hepatic steatosis, and reinforces the contribution of decreased mobilization of hepatic triglycerides for hepatic lipid accumulation in subject with the PNPLA3 148M allele.

Original languageEnglish
Pages (from-to)E821-E825
JournalJournal of Clinical Endocrinology and Metabolism
Issue number5
Publication statusPublished - May 1 2015

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry
  • Endocrinology
  • Biochemistry, medical
  • Endocrinology, Diabetes and Metabolism
  • Medicine(all)


Dive into the research topics of 'Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant'. Together they form a unique fingerprint.

Cite this