TY - JOUR
T1 - Original hypothesis
T2 - Extracorporeal shockwaves as a homeostatic autoimmune restorative treatment (HART) for Type 1 diabetes mellitus
AU - Craig, Kenneth
AU - d'Agostino, Cristina
AU - Poratt, Daniel
AU - Walker, Marjorie
PY - 2014
Y1 - 2014
N2 - Mononuclear invasion of Langerhans islet and the ensuing insulitis triggers signal-transduction for the autoimmune mediated pancreatic beta-cell (β-cell) apoptosis that severely disrupts insulin production resulting in hyperglycemia associated with Type-1 diabetes (T1DM). Today extensive global research is being conducted to eliminate the need for insulin, and even prevent or find a cure for T1DM. The multifactorial combination of autoimmune dysfunction, Langerhans islet hypoxia, and bio-chemical disruption are seen to be contributory factors for β-cell destruction and the consequential disruption to insulin production. Regeneration of β-cells back to physiological levels may restore homeostatic insulin levels, reversing T1DM. Evidence suggests that there are still functioning pancreatic β-cells even in long standing T1DM providing the potential for their regeneration. Although the exact mechanism of extracorporeal shockwaves (ESW) is yet to be fully elucidated, it is seen to influence a complex spectrum of bio-chemical, cellular and neuronal functions (i.e. suppression of pro-inflammatory immune response, improved tissue hemodynamics, anti-microbial properties, and the induction of progenitor cell expression including proangiogenic factors and nitric oxide syntheses). The rationale for the use of ESW as a therapeutic modality in this instance is attributed to its restorative properties and safety profile demonstrated in urology, cardiology, chronic wounds, osteogenesis, complex pain syndromes, and tendinopathies. ESW may restore autoimmune homeostasis creating a suitable environment for pancreatic β-cell proliferation which in-turn may significantly increase or normalize endogenous insulin secretion reducing or totally eliminating dependency of exogenous insulin. The devastating complications, morbidity and mortality associated with T1DM warrants the exploration of homeostatic autoimmune restorative treatment (HART) modalities that may partially or fully reverse this disease condition. We present our hypothesis discussing ESW as a potential homeostatic autoimmune restorative treatment (HART) option for T1DM.
AB - Mononuclear invasion of Langerhans islet and the ensuing insulitis triggers signal-transduction for the autoimmune mediated pancreatic beta-cell (β-cell) apoptosis that severely disrupts insulin production resulting in hyperglycemia associated with Type-1 diabetes (T1DM). Today extensive global research is being conducted to eliminate the need for insulin, and even prevent or find a cure for T1DM. The multifactorial combination of autoimmune dysfunction, Langerhans islet hypoxia, and bio-chemical disruption are seen to be contributory factors for β-cell destruction and the consequential disruption to insulin production. Regeneration of β-cells back to physiological levels may restore homeostatic insulin levels, reversing T1DM. Evidence suggests that there are still functioning pancreatic β-cells even in long standing T1DM providing the potential for their regeneration. Although the exact mechanism of extracorporeal shockwaves (ESW) is yet to be fully elucidated, it is seen to influence a complex spectrum of bio-chemical, cellular and neuronal functions (i.e. suppression of pro-inflammatory immune response, improved tissue hemodynamics, anti-microbial properties, and the induction of progenitor cell expression including proangiogenic factors and nitric oxide syntheses). The rationale for the use of ESW as a therapeutic modality in this instance is attributed to its restorative properties and safety profile demonstrated in urology, cardiology, chronic wounds, osteogenesis, complex pain syndromes, and tendinopathies. ESW may restore autoimmune homeostasis creating a suitable environment for pancreatic β-cell proliferation which in-turn may significantly increase or normalize endogenous insulin secretion reducing or totally eliminating dependency of exogenous insulin. The devastating complications, morbidity and mortality associated with T1DM warrants the exploration of homeostatic autoimmune restorative treatment (HART) modalities that may partially or fully reverse this disease condition. We present our hypothesis discussing ESW as a potential homeostatic autoimmune restorative treatment (HART) option for T1DM.
UR - http://www.scopus.com/inward/record.url?scp=84908355869&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908355869&partnerID=8YFLogxK
U2 - 10.1016/j.mehy.2014.05.008
DO - 10.1016/j.mehy.2014.05.008
M3 - Article
C2 - 24947195
AN - SCOPUS:84908355869
SN - 0306-9877
VL - 83
SP - 250
EP - 253
JO - Medical Hypotheses
JF - Medical Hypotheses
IS - 3
ER -