TY - JOUR
T1 - Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro
AU - Hiippala, Kaisa
AU - Barreto, Gonçalo
AU - Burrello, Claudia
AU - Diaz-Basabe, Angelica
AU - Suutarinen, Maiju
AU - Kainulainen, Veera
AU - Bowers, Jolene R.
AU - Lemmer, Darrin
AU - Engelthaler, David M.
AU - Eklund, Kari K.
AU - Facciotti, Federica
AU - Satokari, Reetta
N1 - Funding Information:
We would like to thank Erika Mileti (European Institute of Oncology, Milan, Italy) and Katariina Nurmi (Translational Immunology Research Program, University of Helsinki) for technical assistance in the laboratory work. We would also like to acknowledge the work done by Extracellular Vesicle Core [Department of Biosciences and the Faculty of Pharmacy and the Institute for Molecular Medicine Finland (FIMM)] and Electron Microscopy Unit (Institute of Biotechnology, University of Helsinki). Funding. This research was funded by the Sigrid Juselius Foundation, FI (Senior Researcher?s grant for RS), P?ivikki and Sakari Sohlberg Foundation for RS, the Doctoral Program in Microbiology and Biotechnology, University of Helsinki, FI and Emil Aaltonen Foundation funding for KH, and Mary och Georg C. Ehrnrooths stiftelse for VK.
Publisher Copyright:
© Copyright © 2020 Hiippala, Barreto, Burrello, Diaz-Basabe, Suutarinen, Kainulainen, Bowers, Lemmer, Engelthaler, Eklund, Facciotti and Satokari.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/12
Y1 - 2020/11/12
N2 - Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.
AB - Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.
KW - gut microbiota
KW - host-microbe interactions
KW - immunoregulation
KW - LPS
KW - Odoribacter
KW - OMV
UR - http://www.scopus.com/inward/record.url?scp=85096705502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096705502&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2020.575455
DO - 10.3389/fmicb.2020.575455
M3 - Article
AN - SCOPUS:85096705502
SN - 1664-302X
VL - 11
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 575455
ER -