TY - JOUR
T1 - Neuroprotection and enhanced recovery with Hypericum perforatum extract after experimental spinal cord injury in mice
AU - Genovese, Tiziana
AU - Mazzon, Emanuela
AU - Menegazzi, Marta
AU - Di Paola, Rosanna
AU - Muià, Carmelo
AU - Crisafulli, Concetta
AU - Bramanti, Placido
AU - Suzuki, Hisanori
AU - Cuzzocrea, Salvatore
PY - 2006/6
Y1 - 2006/6
N2 - Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg • kg) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function.
AB - Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg • kg) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function.
KW - Inflammation
KW - Neutrophil infiltration
KW - Oxidative stress
KW - PAR
KW - Polyphenols
KW - STAT-3
UR - http://www.scopus.com/inward/record.url?scp=33745612240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745612240&partnerID=8YFLogxK
U2 - 10.1097/01.shk.0000209560.54328.69
DO - 10.1097/01.shk.0000209560.54328.69
M3 - Article
C2 - 16721269
AN - SCOPUS:33745612240
SN - 1073-2322
VL - 25
SP - 608
EP - 617
JO - Shock
JF - Shock
IS - 6
ER -