TY - JOUR
T1 - Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene
AU - Akerman, Ildem
AU - Maestro, Miguel Angel
AU - De Franco, Elisa
AU - Grau, Vanessa
AU - Flanagan, Sarah
AU - García-Hurtado, Javier
AU - Mittler, Gerhard
AU - Ravassard, Philippe
AU - Piemonti, Lorenzo
AU - Ellard, Sian
AU - Hattersley, Andrew T.
AU - Ferrer, Jorge
N1 - Funding Information:
This research was supported by the Birmingham Fellowship Programme , RD Lawrence Fellowship (Diabetes UK, 20/0006136 ), and Academy of Medical Sciences Springboard ( SBF006\1140 ) to I.A. Other main funding sources (to J.F.) are Ministerio de Ciencia e Innovación ( BFU2014-54284-R and RTI2018-095666-B-I00 ), Medical Research Council ( MR/L02036X/1 ), a Wellcome Trust Senior Investigator Award ( WT101033 ), European Research Council Advanced Grant ( 789055 ), and FP6-LIFESCIHEALTH 518153 . E.D.F. is a Diabetes UK RD Lawrence Fellow ( 19/005971 ). A.T.H. and S.E. are the recipients of a Wellcome Trust Senior Investigator award ( WT098395/Z/12/Z ), and A.T.H. is employed as a core member of staff within the NIHR -funded Exeter Clinical Research Facility and is an NIHR senior investigator. S.E.F. has a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society ( 105636/Z/14/Z ). Human islets for research were supported by the Juvenile Diabetes Research Foundation ( 2-RSC-2019-724-I-X ). Work in CRG was supported by the CERCA Programme , Generalitat de Catalunya , and Centro de Excelencia Severo Ochoa ( SEV-2015-0510 ). CRG acknowledges the support of the Spanish Ministry of Science and Innovation to the EMBL partnership. We thank the University of Barcelona School of Medicine animal facility, Center of Genomic Regulation and Imperial College London Genomics Units, and Larry Chan (Baylor College), Roland Stein (Vanderbilt University), Anton Jetten (NIEHS, NIH, North Carolina), Doris Stoffers (University of Pennsylvania), Jochen Seufert (University of Freiburg), Marko Horb (Marine Biological Laboratory), Alpana Ray (University of Missouri), and Tatsuya Tsurimi (Aichi Cancer Center, Ngoya, Japan) for generous gifts of valuable reagents and Kader Thiam (genOway) for overseeing the design of mouse models. We thank Diego Balboa and Mirabai Cuenca for critical comments on the manuscript. Graphical abstract drawings were by Yasemin Ezel with clipart from Biorender.
Funding Information:
This research was supported by the Birmingham Fellowship Programme, RD Lawrence Fellowship (Diabetes UK, 20/0006136), and Academy of Medical Sciences Springboard (SBF006\1140) to I.A. Other main funding sources (to J.F.) are Ministerio de Ciencia e Innovaci?n (BFU2014-54284-R and RTI2018-095666-B-I00), Medical Research Council (MR/L02036X/1), a Wellcome Trust Senior Investigator Award (WT101033), European Research Council Advanced Grant (789055), and FP6-LIFESCIHEALTH 518153. E.D.F. is a Diabetes UK RD Lawrence Fellow (19/005971). A.T.H. and S.E. are the recipients of a Wellcome Trust Senior Investigator award (WT098395/Z/12/Z), and A.T.H. is employed as a core member of staff within the NIHR-funded Exeter Clinical Research Facility and is an NIHR senior investigator. S.E.F. has a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (105636/Z/14/Z). Human islets for research were supported by the Juvenile Diabetes Research Foundation (2-RSC-2019-724-I-X). Work in CRG was supported by the CERCA Programme, Generalitat de Catalunya, and Centro de Excelencia Severo Ochoa (SEV-2015-0510). CRG acknowledges the support of the Spanish Ministry of Science and Innovation to the EMBL partnership. We thank the University of Barcelona School of Medicine animal facility, Center of Genomic Regulation and Imperial College London Genomics Units, and Larry Chan (Baylor College), Roland Stein (Vanderbilt University), Anton Jetten (NIEHS, NIH, North Carolina), Doris Stoffers (University of Pennsylvania), Jochen Seufert (University of Freiburg), Marko Horb (Marine Biological Laboratory), Alpana Ray (University of Missouri), and Tatsuya Tsurimi (Aichi Cancer Center, Ngoya, Japan) for generous gifts of valuable reagents and Kader Thiam (genOway) for overseeing the design of mouse models. We thank Diego Balboa and Mirabai Cuenca for critical comments on the manuscript. Graphical abstract drawings were by Yasemin Ezel with clipart from Biorender. I.A. and J.F. conceived and coordinated the study. I.A. performed cell-based and computational studies and supervised mouse analysis. I.A. and M.A.M. performed image analysis of mouse mutants and isolated islets. L.P. purified human islets. V.G. maintained mouse colonies, G.M. performed SILAC experiments, P.R. designed and created lentiviral vectors, and E.D.F. S.F. S.E. and A.T.H. identified and studied patient mutations. I.A. and J.F. wrote the manuscript with input from the remaining authors. P.R. is a shareholder and consultant for Endocells/Unicercell Biosolutions. The other authors declare no competing interests.
Funding Information:
Human pancreatic islets were obtained through the European Consortium on Islet Transplantation (ECIT), Islets for Basic Research Program supported by the Juvenile Diabetes Research Foundation (program 2-RSC-2019-724-I-X). Pancreatic islets were isolated from multiorgan donors without a history of glucose intolerance ( Nano et al., 2015 ), shipped in culture medium and re-cultured at 37°C in a humidified chamber with 5% CO 2 in glucose-free RPMI 1640 supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 U/ml streptomycin and 11mM glucose for three days before analysis.
Publisher Copyright:
© 2021 The Authors
PY - 2021/4/13
Y1 - 2021/4/13
N2 - Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.
AB - Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.
KW - GLIS3
KW - HIP
KW - INS promoter
KW - mouse model
KW - neonatal diabetes
KW - regulatory element
UR - http://www.scopus.com/inward/record.url?scp=85104092328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104092328&partnerID=8YFLogxK
U2 - 10.1016/j.celrep.2021.108981
DO - 10.1016/j.celrep.2021.108981
M3 - Article
C2 - 33852861
AN - SCOPUS:85104092328
SN - 2211-1247
VL - 35
JO - Cell Reports
JF - Cell Reports
IS - 2
M1 - 108981
ER -