TY - BOOK
T1 - Myokines: The endocrine coupling of skeletal muscle and bone
T2 - Advances in Clinical Chemistry
AU - Gomarasca, M.
AU - Banfi, G.
AU - Lombardi, G.
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020
Y1 - 2020
N2 - Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
AB - Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
UR - http://www.scopus.com/inward/record.url?scp=85070187954&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070187954&partnerID=8YFLogxK
U2 - 10.1016/bs.acc.2019.07.010
DO - 10.1016/bs.acc.2019.07.010
M3 - Book
SN - 9780128208014
VL - 94
T3 - Advances in Clinical Chemistry
BT - Myokines: The endocrine coupling of skeletal muscle and bone
ER -