TY - JOUR
T1 - MicroRNA-532-5p Regulates Pericyte Function by Targeting the Transcription Regulator BACH1 and Angiopoietin-1
AU - Slater, Sadie C.
AU - Jover, Eva
AU - Martello, Andrea
AU - Mitić, Tijana
AU - Rodriguez-Arabaolaza, Iker
AU - Vono, Rosa
AU - Alvino, Valeria V.
AU - Satchell, Simon C.
AU - Spinetti, Gaia
AU - Caporali, Andrea
AU - Madeddu, Paolo
PY - 2018/12/5
Y1 - 2018/12/5
N2 - MicroRNAs regulate endothelial function and angiogenesis, but their implication in pericyte biology remains undetermined. A PCR array, covering a panel of 379 human microRNAs, showed microRNA-532-5p to be one of the most differentially modulated by hypoxia, which was confirmed by qPCR in both skeletal muscle and adventitial pericytes. Furthermore, microRNA-532-5p was upregulated in murine muscular pericytes early after experimentally induced ischemia, decreasing below baseline after reperfusion. Transfection of human pericytes with anti-microRNA, microRNA-mimic, or controls indicates microRNA-532-5p modulates pro-angiogenic activity via transcriptional regulation of angiopoietin-1. Tie-2 blockade abrogated the ability of microRNA-532-5p-overexpressing pericytes to promote endothelial network formation in vitro. However, angiopoietin-1 is not a direct target of microRNA-532-5p. In silico analysis of microRNA-532-5p inhibitory targets associated with angiopoietin-1 transcription indicated three potential candidates, BACH1, HIF1AN, and EGLN1. Binding of microRNA-532-5p to the BACH1 3′ UTR was confirmed by luciferase assay. MicroRNA-532-5p silencing increased BACH1, while a microRNA-532-5p mimic decreased expression. Silencing of BACH1 modulated angiopoietin-1 gene and protein expression. ChIP confirmed BACH1 transcriptional regulation of angiopoietin-1 promoter. Finally, microRNA-532-5p overexpression increased pericyte coverage in an in vivo Matrigel assay, suggesting its role in vascular maturation. This study provides a new mechanistic understanding of the transcriptional program orchestrating angiopoietin-1/Tie-2 signaling in human pericytes. Angiopoietin-1 is an important regulator of angiogenesis, yet little is known regarding its transcriptional regulation. Slater et al. (2018) demonstrate angiopoietin-1 induction in pericytes occurs via miR-532-5p regulation of BACH1 and modulation of this pathway promotes changes in endothelial permeability, vascular stability, and angiogenesis.
AB - MicroRNAs regulate endothelial function and angiogenesis, but their implication in pericyte biology remains undetermined. A PCR array, covering a panel of 379 human microRNAs, showed microRNA-532-5p to be one of the most differentially modulated by hypoxia, which was confirmed by qPCR in both skeletal muscle and adventitial pericytes. Furthermore, microRNA-532-5p was upregulated in murine muscular pericytes early after experimentally induced ischemia, decreasing below baseline after reperfusion. Transfection of human pericytes with anti-microRNA, microRNA-mimic, or controls indicates microRNA-532-5p modulates pro-angiogenic activity via transcriptional regulation of angiopoietin-1. Tie-2 blockade abrogated the ability of microRNA-532-5p-overexpressing pericytes to promote endothelial network formation in vitro. However, angiopoietin-1 is not a direct target of microRNA-532-5p. In silico analysis of microRNA-532-5p inhibitory targets associated with angiopoietin-1 transcription indicated three potential candidates, BACH1, HIF1AN, and EGLN1. Binding of microRNA-532-5p to the BACH1 3′ UTR was confirmed by luciferase assay. MicroRNA-532-5p silencing increased BACH1, while a microRNA-532-5p mimic decreased expression. Silencing of BACH1 modulated angiopoietin-1 gene and protein expression. ChIP confirmed BACH1 transcriptional regulation of angiopoietin-1 promoter. Finally, microRNA-532-5p overexpression increased pericyte coverage in an in vivo Matrigel assay, suggesting its role in vascular maturation. This study provides a new mechanistic understanding of the transcriptional program orchestrating angiopoietin-1/Tie-2 signaling in human pericytes. Angiopoietin-1 is an important regulator of angiogenesis, yet little is known regarding its transcriptional regulation. Slater et al. (2018) demonstrate angiopoietin-1 induction in pericytes occurs via miR-532-5p regulation of BACH1 and modulation of this pathway promotes changes in endothelial permeability, vascular stability, and angiogenesis.
KW - angiogenesis
KW - microRNA
KW - pericytes
UR - http://www.scopus.com/inward/record.url?scp=85054091166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054091166&partnerID=8YFLogxK
U2 - 10.1016/j.ymthe.2018.08.020
DO - 10.1016/j.ymthe.2018.08.020
M3 - Article
C2 - 30274787
AN - SCOPUS:85054091166
SN - 1525-0016
VL - 26
SP - 2823
EP - 2837
JO - Molecular Therapy
JF - Molecular Therapy
IS - 12
ER -