MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering

L. Serafini, A. Bacci, A. Bellandi, M. Bertucci, M. Bolognesi, A. Bosotti, F. Broggi, R. Calandrino, F. Camera, F. Canella, S. Capra, P. Cardarelli, M. Carrara, K. Cassou, A. Castoldi, R. Castriconi, G. M. Cattaneo, S. Cialdi, A. Cianchi, N. ColuccelliC. Curatolo, A. Del Vecchio, S. Di Mitri, I. Drebot, K. Dupraz, A. Esposito, L. Faillace, M. Ferrario, C. Fiorini, G. Galzerano, M. Gambaccini, G. Ghiringhelli, D. Giannotti, D. Giove, F. Groppi, C. Guazzoni, P. Laporta, S. Leoni, A. Loria, T. Mazza, C. Meroni, C. Pagani, L. Perini, M. Petrarca, A. R. Rossi, L. Rossi, P. Russo, V. Torri, R. Valdagni, G. Rossi

Research output: Contribution to journalArticlepeer-review


The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated in CW mode (1 MHz). MariX provides FEL emission in the range 0.2–8 keV with 10 8 photons per pulse ideally suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and serving a multidisciplinary user community, covering fundamental science of matter and application to life sciences, including health at preclinical and clinical level.

Original languageEnglish
Pages (from-to)167-172
Number of pages6
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Publication statusPublished - Jun 21 2019


  • Free-electron lasers
  • Linear accelerators

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation


Dive into the research topics of 'MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering'. Together they form a unique fingerprint.

Cite this