Abstract
Original language | English |
---|---|
Journal | Cells |
Volume | 10 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Cell therapy
- Malignant pleural mesothelioma (MPM)
- Mesenchymal stromal cells
- Mesothelioma
- caspase 3
- caspase 9
- CD146 antigen
- CD34 antigen
- doxorubicin
- fibroblast growth factor
- fibronectin
- fluorouracil
- gamma interferon
- gemcitabine
- hydrogel
- interleukin 10
- interleukin 1beta
- interleukin 6
- oxaliplatin
- paclitaxel
- phosphatidylserine
- platelet endothelial cell adhesion molecule 1
- protein Bax
- Thy 1 membrane glycoprotein
- tubulin
- tumor necrosis factor
- vasculotropin
- adipose tissue
- ADSC cell line
- animal cell
- animal experiment
- animal model
- antineoplastic activity
- antiproliferative activity
- apoptosis
- Article
- cancer chemotherapy
- cancer growth
- cancer inhibition
- cancer prognosis
- cancer therapy
- cell cycle arrest
- cell death
- cell lysate
- cell proliferation
- cell viability
- clinical article
- controlled study
- cytokine production
- dendritic cell
- female
- flow cytometry
- fluorescence microscopy
- histology
- human
- human cell
- immunofluorescence
- immunohistochemistry
- in vitro study
- in vivo study
- mesenchymal stroma cell
- mesothelioma cell line
- mouse
- MTT assay
- nonhuman
- pleura mesothelioma
- secretomics
- T lymphocyte
- transwell assay
- tumor growth
- tumor microenvironment
- tumor xenograft
Fingerprint
Dive into the research topics of 'Inhibition of human malignant pleural mesothelioma growth by mesenchymal stromal cells'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Inhibition of human malignant pleural mesothelioma growth by mesenchymal stromal cells. / Coccè, V.; La Monica, S.; Bonelli, M. et al.
In: Cells, Vol. 10, No. 6, 2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Inhibition of human malignant pleural mesothelioma growth by mesenchymal stromal cells
AU - Coccè, V.
AU - La Monica, S.
AU - Bonelli, M.
AU - Alessandri, G.
AU - Alfieri, R.
AU - Lagrasta, C.A.
AU - Madeddu, D.
AU - Frati, C.
AU - Flammini, L.
AU - Lisini, D.
AU - Marcianti, A.
AU - Parati, E.
AU - Paino, F.
AU - Giannì, A.
AU - Farronato, G.
AU - Falco, A.
AU - Spaggiari, L.
AU - Petrella, F.
AU - Pessina, A.
N1 - Cited By :1 Export Date: 15 October 2021 Correspondence Address: La Monica, S.; Department of Medicine and Surgery, Italy; email: silvia.lamonica@unipr.it Chemicals/CAS: caspase 3, 169592-56-7; caspase 9, 180189-96-2; doxorubicin, 23214-92-8, 25316-40-9; fibroblast growth factor, 62031-54-3; fibronectin, 86088-83-7; fluorouracil, 51-21-8; gamma interferon, 82115-62-6; gemcitabine, 103882-84-4; oxaliplatin, 61825-94-3; paclitaxel, 33069-62-4; vasculotropin, 127464-60-2 Manufacturers: Labsonic UBraun, Germany; Euroclone, Italy; Becton Dickinson, United States; Dow, United StatesSarstedt, Germany; Abcam, United Kingdom; Biorad, United States; Terumo BCT, United States References: Carbone, M., Ly, B.H., Dodson, R.F., Pagano, I., Morris, P.T., Dogan, U.A., Gazdar, A.F., Yang, H., Malignant mesothelioma: Facts, myths, and hypotheses (2012) J. Cell Physiol, 227, pp. 44-58. , [CrossRef] [PubMed]; Peto, J., Decarli, A., La Vecchia, C., Levi, F., Negri, E., The European mesothelioma epidemic (1999) Br. J. Cancer, 79, pp. 666-672. , [CrossRef] [PubMed]; Fennell, D.A., Gaudino, G., O’Byrne, K.J., Mutti, L., van Meerbeeck, J., Advances in the systemic therapy of malignant pleural mesothelioma (2008) Nat. Clin. Pract. Oncol, 5, pp. 136-147. , [CrossRef]; Krug, L.M., Pass, H.I., Rusch, V.W., Kindler, H.L., Sugarbaker, D.J., Rosenzweig, K.E., Flores, R., Monberg, M., Multicenter phase II trial of neoadjuvant pemetrexed plus cisplatin followed by extrapleural pneumonectomy and radiation for malignant pleural mesothelioma (2009) J. Clin. Oncol, 27, pp. 3007-3013. , [CrossRef]; Mutti, L., Peikert, T., Robinson, B.W.S., Scherpereel, A., Tsao, A.S., de Perrot, M., Woodard, G.A., Hirsch, F.R., Scientific Advances and New Frontiers in Mesothelioma Therapeutics (2018) J. Thorac. Oncol, 13, pp. 1269-1283. , [CrossRef] [PubMed]; Li, W., Zhou, Y., Yang, J., Zhang, X., Zhang, H., Zhang, T., Zhao, S., Wu, H., Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8 (2015) J. Exp. Clin. Cancer Res, 34, p. 52. , [CrossRef]; Li, G.C., Zhang, H.W., Zhao, Q.C., Sun, L.I., Yang, J.J., Hong, L., Feng, F., Cai, L., Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1 (2016) Oncol. Lett, 11, pp. 1089-1094. , [CrossRef] [PubMed]; Houthuijzen, J.M., Daenen, L.G., Roodhart, J.M., Voest, E.E., The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression (2012) Br. J. Cancer, 106, pp. 1901-1906. , [CrossRef]; Ramasamy, R., Lam, E.W., Soeiro, I., Tisato, V., Bonnet, D., Dazzi, F., Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth (2007) Leukemia, 21, pp. 304-310. , [CrossRef]; Chanda, D., Isayeva, T., Kumar, S., Hensel, J.A., Sawant, A., Ramaswamy, G., Siegal, G.P., Ponnazhagan, S., Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis (2009) Clin. Cancer Res, 15, pp. 7175-7185. , [CrossRef]; Ohlsson, L.B., Varas, L., Kjellman, C., Edvardsen, K., Lindvall, M., Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix (2003) Exp. Mol. Pathol, 75, pp. 248-255. , [CrossRef]; Ayuzawa, R., Doi, C., Rachakatla, R.S., Pyle, M.M., Maurya, D.K., Troyer, D., Tamura, M., Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo (2009) Cancer Lett, 280, pp. 31-37. , [CrossRef]; Yuan, Z., Kolluri, K.K., Gowers, K.H., Janes, S.M., TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy (2017) J. Extracell. Vesicles, 6, p. 1265291. , [CrossRef]; Li, L., Tian, H., Chen, Z., Yue, W., Li, S., Li, W., Inhibition of lung cancer cell proliferation mediated by human mesenchymal stem cells (2011) Acta Biochim. Biophys. Sin. (Shanghai), 43, pp. 143-148. , [CrossRef] [PubMed]; Ramdasi, S., Sarang, S., Viswanathan, C., Potential of Mesenchymal Stem Cell based application in Cancer (2015) Int. J. Hematol. Oncol. Stem Cell Res, 9, pp. 95-103; Galland, S., Stamenkovic, I., Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression (2020) J. Pathol, 250, pp. 555-572. , [CrossRef]; Hmadcha, A., Martin-Montalvo, A., Gauthier, B.R., Soria, B., Capilla-Gonzalez, V., Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy (2020) Front. Bioeng. Biotechnol, 8, p. 43. , [CrossRef] [PubMed]; Nwabo Kamdje, A.H., Kamga, P.T., Simo, R.T., Vecchio, L., Seke Etet, P.F., Muller, J.M., Bassi, G., Amvene, J.M., Mesenchymal stromal cells’ role in tumor microenvironment: Involvement of signaling pathways (2017) Cancer Biol. Med, 14, pp. 129-141. , [CrossRef]; Cortes-Dericks, L., Froment, L., Kocher, G., Schmid, R.A., Human lung-derived mesenchymal stem cell-conditioned medium exerts in vitro antitumor effects in malignant pleural mesothelioma cell lines (2016) Stem Cell Res. Ther, 7, p. 25. , [CrossRef]; Lathrop, M.J., Sage, E.K., Macura, S.L., Brooks, E.M., Cruz, F., Bonenfant, N.R., Sokocevic, D., Dunaway, C.W., Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma (2015) Cancer Gene Ther, 22, pp. 44-54. , [CrossRef] [PubMed]; Sage, E.K., Kolluri, K.K., McNulty, K., Lourenco Sda, S., Kalber, T.L., Ordidge, K.L., Davies, D., Janes, S.M., Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma (2014) Thorax, 69, pp. 638-647. , [CrossRef]; Lisini, D., Nava, S., Pogliani, S., Avanzini, M.A., Lenta, E., Bedini, G., Mantelli, M., Boncoraglio, G., Adipose tissue-derived mesenchymal stromal cells for clinical application: An efficient isolation approach (2019) Curr. Res. Transl. Med, 67, pp. 20-27. , [CrossRef]; Lisini, D., Nava, S., Frigerio, S., Pogliani, S., Maronati, G., Marcianti, A., Coccè, V., Paino, F., Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications (2020) Pharmaceutics, 12, p. 411. , [CrossRef] [PubMed]; Petrella, F., Coccè, V., Masia, C., Milani, M., Salè, E.O., Alessandri, G., Parati, E., Brini, A.T., Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells (2017) Biomed. Pharmacother, 87, pp. 755-758. , [CrossRef]; Mossman, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63. , [CrossRef]; Fumarola, C., La Monica, S., Alfieri, R.R., Borra, E., Guidotti, G.G., Cell size reduction induced by inhibition of the mTOR/S6Ksignaling pathway protects Jurkat cells from apoptosis (2005) Cell Death Differ, 12, pp. 1344-1357. , [CrossRef]; Balducci, L., Blasi, A., Saldarelli, M., Soleti, A., Pessina, A., Bonomi, A., Coccè, V., Ceserani, V., Immortalization of human adipose-derived stromal cells: Production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors (2014) Stem Cell Res. Ther, 5, p. 63. , [CrossRef]; Coccè, V., Farronato, D., Brini, A.T., Masia, C., Giannì, A.B., Piovani, G., Sisto, F., Pessina, A., Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma (2017) Sci. Rep, 7, p. 9376. , [CrossRef]; Coccè, V., Balducci, L., Falchetti, M.L., Pascucci, L., Ciusani, E., Brini, A.T., Sisto, F., Parati, E., Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles (2017) Anticancer Agents Med. Chem, 17, pp. 1578-1585. , [CrossRef] [PubMed]; Berenzi, A., Steimberg, N., Boniotti, J., Mazzoleni, G., MRT letter: 3D culture of isolated cells: A fast and efficient method for optimizing their histochemical and immunocytochemical analyses (2015) Microsc. Res. Tech, 78, pp. 249-254. , [CrossRef]; La Monica, S., Cretella, D., Bonelli, M., Fumarola, C., Cavazzoni, A., Digiacomo, G., Flammini, L., Naldi, N., Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines (2017) J. Exp. Clin. Cancer Res, 36, p. 174. , [CrossRef]; La Monica, S., Minari, R., Cretella, D., Flammini, L., Fumarola, C., Bonelli, M., Cavazzoni, A., Madeddu, D., Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC (2019) J. Exp. Clin. Cancer Res, 38, p. 222. , [CrossRef]; Christodoulou, I., Goulielmaki, M., Devetzi, M., Panagiotidis, M., Koliakos, G., Zoumpourlis, V., Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review (2018) Stem Cell Res. Ther, 9, p. 336. , [CrossRef]; Park, C.W., Kim, K.S., Bae, S., Son, H.K., Myung, P.K., Hong, H.J., Kim, H., Cytokine secretion profiling of human mesenchymal stem cells by antibody array (2009) Int. J. Stem Cells, 2, pp. 59-68. , [CrossRef] [PubMed]; Wu, Y., Hoogduijn, M.J., Baan, C.C., Korevaar, S.S., de Kuiper, R., Yan, L., Wang, L., van Besouw, N.M., Adipose Tissue-Derived Mesenchymal Stem Cells Have a Heterogenic Cytokine Secretion Profile (2017) Stem Cells Int, 2017, p. 4960831. , [CrossRef] [PubMed]; Abdul Rahim, S.N., Ho, G.Y., Coward, J.I., The role of interleukin-6 in malignant mesothelioma (2015) Transl. Lung Cancer Res, 4, pp. 55-66; Assoni, A., Coatti, G., Valadares, M.C., Beccari, M., Gomes, J., Pelatti, M., Mitne-Neto, M., Zatz, M., Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use (2017) Stem Cells Dev, 26, pp. 206-214. , [CrossRef] [PubMed]; Shrihari, T.G., Dual role of inflammatory mediators in cancer (2017) Ecancermedicalscience, 11, p. 721. , [CrossRef]; Lee, M.W., Ryu, S., Kim, D.S., Lee, J.W., Sung, K.W., Koo, H.H., Yoo, K.H., Mesenchymal stem cells in suppression or progression of hematologic malignancy: Current status and challenges (2019) Leukemia, 33, pp. 597-611. , [CrossRef]; Pokrovskaya, L.A., Zubareva, E.V., Nadezhdin, S.V., Lysenko, A.S., Litovkina, T.L., Biological activity of mesenchymal stem cells secretome as a basis for cell-free therapeutic approach (2020) Res. Results Pharmacol, 6, pp. 57-68. , [CrossRef]; Mirabdollahi, M., Haghjooyjavanmard, S., Sadeghi-Aliabadi, H., An anticancer effect of umbilical cord-derived mesenchymal stem cell secretome on the breast cancer cell line (2019) Cell Tissue Bank, 20, pp. 423-434. , [CrossRef]; Leuning, D.G., Beijer, N.R.M., du Fossé, N.A., Vermeulen, S., Lievers, E., van Kooten, C., Rabelink, T.J., Boer, J., The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment (2018) Sci. Rep, 8, p. 7716. , [CrossRef] [PubMed]; Otsu, K., Das, S., Houser, S.D., Quadri, S.K., Bhattacharya, S., Bhattacharya, J., Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells (2009) Blood, 113, pp. 4197-4205. , [CrossRef]; Pessina, A., Bonomi, A., Coccè, V., Invernici, G., Navone, S., Cavicchini, L., Sisto, F., Locatelli, A., Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy (2011) PLoS ONE, 6, p. e28321. , [CrossRef] [PubMed]; Bonomi, A., Sordi, V., Dugnani, E., Ceserani, V., Dossena, M., Coccè, V., Cavicchini, L., Piovani, G., Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells (2015) Cytotherapy, 17, pp. 1687-1695. , [CrossRef] [PubMed]
PY - 2021
Y1 - 2021
N2 - Background: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM. Methods: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines. After large-scale production of MSCs in a bioreactor, their efficacy was also evaluated on a human MPM xenograft in mice. Results: MSCs, their lysate and secretome inhibited MPM cell proliferation in vitro with S or G0/G1 arrest of the cell cycle, respectively. MSC lysate induced cell death by apoptosis. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. Interestingly, no tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment. Conclusions: These data demonstrated for the first time that MSCs, both through paracrine and cell-to-cell interaction mechanisms, induced a significant inhibition of human mesothelioma growth. Since the prognosis for MPM patients is poor and the options of care are limited to chemotherapy, MSCs could provide a potential new therapeutic approach for this malignancy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
AB - Background: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM. Methods: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines. After large-scale production of MSCs in a bioreactor, their efficacy was also evaluated on a human MPM xenograft in mice. Results: MSCs, their lysate and secretome inhibited MPM cell proliferation in vitro with S or G0/G1 arrest of the cell cycle, respectively. MSC lysate induced cell death by apoptosis. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. Interestingly, no tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment. Conclusions: These data demonstrated for the first time that MSCs, both through paracrine and cell-to-cell interaction mechanisms, induced a significant inhibition of human mesothelioma growth. Since the prognosis for MPM patients is poor and the options of care are limited to chemotherapy, MSCs could provide a potential new therapeutic approach for this malignancy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
KW - Cell therapy
KW - Malignant pleural mesothelioma (MPM)
KW - Mesenchymal stromal cells
KW - Mesothelioma
KW - caspase 3
KW - caspase 9
KW - CD146 antigen
KW - CD34 antigen
KW - doxorubicin
KW - fibroblast growth factor
KW - fibronectin
KW - fluorouracil
KW - gamma interferon
KW - gemcitabine
KW - hydrogel
KW - interleukin 10
KW - interleukin 1beta
KW - interleukin 6
KW - oxaliplatin
KW - paclitaxel
KW - phosphatidylserine
KW - platelet endothelial cell adhesion molecule 1
KW - protein Bax
KW - Thy 1 membrane glycoprotein
KW - tubulin
KW - tumor necrosis factor
KW - vasculotropin
KW - adipose tissue
KW - ADSC cell line
KW - animal cell
KW - animal experiment
KW - animal model
KW - antineoplastic activity
KW - antiproliferative activity
KW - apoptosis
KW - Article
KW - cancer chemotherapy
KW - cancer growth
KW - cancer inhibition
KW - cancer prognosis
KW - cancer therapy
KW - cell cycle arrest
KW - cell death
KW - cell lysate
KW - cell proliferation
KW - cell viability
KW - clinical article
KW - controlled study
KW - cytokine production
KW - dendritic cell
KW - female
KW - flow cytometry
KW - fluorescence microscopy
KW - histology
KW - human
KW - human cell
KW - immunofluorescence
KW - immunohistochemistry
KW - in vitro study
KW - in vivo study
KW - mesenchymal stroma cell
KW - mesothelioma cell line
KW - mouse
KW - MTT assay
KW - nonhuman
KW - pleura mesothelioma
KW - secretomics
KW - T lymphocyte
KW - transwell assay
KW - tumor growth
KW - tumor microenvironment
KW - tumor xenograft
U2 - 10.3390/cells10061427
DO - 10.3390/cells10061427
M3 - Article
SN - 2073-4409
VL - 10
JO - Cells
JF - Cells
IS - 6
ER -