TY - JOUR
T1 - Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes
AU - Atukorale, Prabhani U.
AU - Yang, Yu Sang
AU - Bekdemir, Ahmet
AU - Carney, Randy P.
AU - Silva, Paulo J.
AU - Watson, Nicki
AU - Stellacci, Francesco
AU - Irvine, Darrell J.
PY - 2015/7/14
Y1 - 2015/7/14
N2 - Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.
AB - Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.
UR - http://www.scopus.com/inward/record.url?scp=84933566142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84933566142&partnerID=8YFLogxK
U2 - 10.1039/c5nr01355k
DO - 10.1039/c5nr01355k
M3 - Article
C2 - 26077112
AN - SCOPUS:84933566142
SN - 2040-3364
VL - 7
SP - 11420
EP - 11432
JO - Nanoscale
JF - Nanoscale
IS - 26
ER -