Abstract
Original language | English |
---|---|
Pages (from-to) | 465-476 |
Number of pages | 12 |
Journal | Cancer Immunology and Immunotherapy |
Volume | 65 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- Acute leukemias
- Hematopoietic stem cell transplantation
- Immunotherapy
- Innate lymphoid cells
- NK cells
- Tumor microenvironment
- adoptive immunotherapy
- biological model
- cell communication
- cytotoxicity
- hematopoietic stem cell transplantation
- human
- immunology
- leukemia
- natural killer cell
- Neoplasms
- procedures
- transplantation
- tumor microenvironment
- Cell Communication
- Cytotoxicity, Immunologic
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunotherapy, Adoptive
- Killer Cells, Natural
- Leukemia
- Models, Immunological
- Tumor Microenvironment
Fingerprint
Dive into the research topics of 'Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias. / Pietra, G.; Vitale, C.; Pende, D. et al.
In: Cancer Immunology and Immunotherapy, Vol. 65, No. 4, 2016, p. 465-476.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Human natural killer cells: news in the therapy of solid tumors and high-risk leukemias
AU - Pietra, G.
AU - Vitale, C.
AU - Pende, D.
AU - Bertaina, A.
AU - Moretta, Francesca
AU - Falco, M.
AU - Vacca, P.
AU - Montaldo, E.
AU - Cantoni, C.
AU - Mingari, M.C.
AU - Moretta, A.
AU - Locatelli, F.
AU - Moretta, L.
N1 - Cited By :3 Export Date: 31 March 2017 CODEN: CIIMD Correspondence Address: Moretta, L.; IRCCS Ospedale Pediatrico Bambino GesùItaly; email: lorenzomoretta@opbg.net References: Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., Yokoyama, W.M., Ugolini, S., Innate or adaptive immunity? The example of natural killer cells (2011) Science, 331 (6013), pp. 44-49. , COI: 1:CAS:528:DC%2BC3MXpslCh, PID: 21212348; Shi, F.D., Ljunggren, H.G., La Cava, A., Van Kaer, L., Organ-specific features of natural killer cells (2011) Nat Rev Immunol, 11 (10), pp. 658-671. , COI: 1:CAS:528:DC%2BC3MXht1ajtbfN, PID: 21941294; Cerwenka, A., Lanier, L.L., Natural killer cells, viruses and cancer (2001) Nat Rev Immunol, 1 (1), pp. 41-49. , COI: 1:CAS:528:DC%2BD38XlvF2qtLk%3D, PID: 11905813; Fauriat, C., Long, E.O., Ljunggren, H.G., Bryceson, Y.T., Regulation of human NK-cell cytokine and chemokine production by target cell recognition (2010) Blood, 115 (11), pp. 2167-2176. , COI: 1:CAS:528:DC%2BC3cXktVSlsbw%3D, PID: 19965656; Bryceson, Y.T., March, M.E., Ljunggren, H.G., Long, E.O., Activation, coactivation, and costimulation of resting human natural killer cells (2006) Immunol Rev, 214, pp. 73-91. , COI: 1:CAS:528:DC%2BD28XhtlClsr7J, PID: 17100877; Moretta, A., Bottino, C., Vitale, M., Pende, D., Biassoni, R., Mingari, M.C., Moretta, L., Receptors for HLA class-I molecules in human natural killer cells (1996) Annu Rev Immunol, 14, pp. 619-648. , COI: 1:CAS:528:DyaK28XitlCgtbY%3D, PID: 8717527; Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., Moretta, L., Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis (2001) Annu Rev Immunol, 19, pp. 197-223. , COI: 1:CAS:528:DC%2BD3MXivFKgtbk%3D, PID: 11244035; Moretta, L., Bottino, C., Pende, D., Mingari, M.C., Biassoni, R., Moretta, A., Human natural killer cells: their origin, receptors and function (2002) Eur J Immunol, 32 (5), pp. 1205-1211. , COI: 1:CAS:528:DC%2BD38XjvFKjsro%3D, PID: 11981807; Moretta, L., Bottino, C., Pende, D., Vitale, M., Mingari, M.C., Moretta, A., Different checkpoints in human NK-cell activation (2004) Trends Immunol, 25 (12), pp. 670-676. , COI: 1:CAS:528:DC%2BD2cXptl2ktbw%3D, PID: 15530838; Cooper, M.A., Fehniger, T.A., Caligiuri, M.A., The biology of human natural killer-cell subsets (2001) Trends Immunol, 22 (11), pp. 633-640. , COI: 1:CAS:528:DC%2BD3MXot1Siuro%3D, PID: 11698225; Caligiuri, M.A., Human natural killer cells (2008) Blood, 112 (3), pp. 461-469. , COI: 1:CAS:528:DC%2BD1cXpsVajtb0%3D, PID: 18650461; Montaldo, E., Del Zotto, G., Della Chiesa, M., Mingari, M.C., Moretta, A., De Maria, A., Moretta, L., Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function (2013) Cytometry A, 83 (8), pp. 702-713. , PID: 23650273; Carrega, P., Bonaccorsi, I., Di Carlo, E., Morandi, B., Paul, P., Rizzello, V., Cipollone, G., Ferlazzo, G., CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph (2014) J Immunol, 192 (8), pp. 3805-3815. , COI: 1:CAS:528:DC%2BC2cXls1Gmt7Y%3D, PID: 24646734; Carrega, P., Ferlazzo, G., Natural killer cell distribution and trafficking in human tissues (2012) Front Immunol, 3, p. 347. , PID: 23230434; Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Vivier, E., Innate lymphoid cells—a proposal for uniform nomenclature (2013) Nat Rev Immunol, 13 (2), pp. 145-149. , COI: 1:CAS:528:DC%2BC3sXjslGjtg%3D%3D, PID: 23348417; Eberl, G., Di Santo, J.P., Vivier, E., The brave new world of innate lymphoid cells (2015) Nat Immunol, 16 (1), pp. 1-5. , COI: 1:CAS:528:DC%2BC2cXitFKltL3J, PID: 25521670; Bernink, J.H., Peters, C.P., Munneke, M., te Velde, A.A., Meijer, S.L., Weijer, K., Hreggvidsdottir, H.S., Spits, H., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues (2013) Nat Immunol, 14 (3), pp. 221-229. , COI: 1:CAS:528:DC%2BC3sXhtV2qtrw%3D, PID: 23334791; Fuchs, A., Vermi, W., Lee, J.S., Lonardi, S., Gilfillan, S., Newberry, R.D., Cella, M., Colonna, M., Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells (2013) Immunity, 38 (4), pp. 769-781. , COI: 1:CAS:528:DC%2BC3sXjtlamu7Y%3D, PID: 23453631; Barlow, J.L., McKenzie, A.N., Type-2 innate lymphoid cells in human allergic disease (2014) Curr Opin Allergy Clin Immunol, 14 (5), pp. 397-403. , COI: 1:CAS:528:DC%2BC2cXhsVCmsbjJ, PID: 25115682; Goto, Y., Obata, T., Kunisawa, J., Sato, S., Ivanov, I.I., Lamichhane, A., Takeyama, N., Kiyono, H., Innate lymphoid cells regulate intestinal epithelial cell glycosylation (2014) Science, 345 (6202), p. 1254009. , PID: 25214634; Vacca, P., Montaldo, E., Croxatto, D., Loiacono, F., Canegallo, F., Venturini, P.L., Moretta, L., Mingari, M.C., Identification of diverse innate lymphoid cells in human decidua (2015) Mucosal Immunol, 8 (2), pp. 254-264. , COI: 1:CAS:528:DC%2BC2cXhtF2ktb3F, PID: 25052762; Dyring-Andersen, B., Geisler, C., Agerbeck, C., Lauritsen, J.P., Gudjonsdottir, S.D., Skov, L., Bonefeld, C.M., Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin (2014) Br J Dermatol, 170 (3), pp. 609-616. , COI: 1:CAS:528:DC%2BC2cXktlCnurg%3D, PID: 24125475; Kirchberger, S., Royston, D.J., Boulard, O., Thornton, E., Franchini, F., Szabady, R.L., Harrison, O., Powrie, F., Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model (2013) J Exp Med, 210 (5), pp. 917-931. , COI: 1:CAS:528:DC%2BC3sXntlKjsr0%3D, PID: 23589566; Dieu-Nosjean, M.C., Goc, J., Giraldo, N.A., Sautes-Fridman, C., Fridman, W.H., Tertiary lymphoid structures in cancer and beyond (2014) Trends Immunol, 35 (11), pp. 571-580. , COI: 1:CAS:528:DC%2BC2cXhs1ygs7%2FJ, PID: 25443495; Pitzalis, C., Jones, G.W., Bombardieri, M., Jones, S.A., Ectopic lymphoid-like structures in infection, cancer and autoimmunity (2014) Nat Rev Immunol, 14 (7), pp. 447-462. , COI: 1:CAS:528:DC%2BC2cXhtVWqsrzI, PID: 24948366; Burke, S., Lakshmikanth, T., Colucci, F., Carbone, E., New views on natural killer cell-based immunotherapy for melanoma treatment (2010) Trends Immunol, 31 (9), pp. 339-345. , COI: 1:CAS:528:DC%2BC3cXhtFals7rF, PID: 20655806; Carrega, P., Morandi, B., Costa, R., Frumento, G., Forte, G., Altavilla, G., Ratto, G.B., Ferlazzo, G., Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells (2008) Cancer, 112 (4), pp. 863-875. , PID: 18203207; Mamessier, E., Sylvain, A., Thibult, M.L., Houvenaeghel, G., Jacquemier, J., Castellano, R., Goncalves, A., Olive, D., Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity (2011) J Clin Invest, 121 (9), pp. 3609-3622. , COI: 1:CAS:528:DC%2BC3MXhtFOhsbfO, PID: 21841316; Platonova, S., Cherfils-Vicini, J., Damotte, D., Crozet, L., Vieillard, V., Validire, P., Andre, P., Cremer, I., Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma (2011) Cancer Res, 71 (16), pp. 5412-5422. , COI: 1:CAS:528:DC%2BC3MXhtVSrtb3M, PID: 21708957; Konjevic, G., Mirjacic Martinovic, K., Vuletic, A., Jovic, V., Jurisic, V., Babovic, N., Spuzic, I., Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients (2007) Clin Exp Metastasis, 24 (1), pp. 1-11. , COI: 1:CAS:528:DC%2BD2sXlt12rsrc%3D, PID: 17295095; Lee, J.C., Lee, K.M., Kim, D.W., Heo, D.S., Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients (2004) J Immunol, 172 (12), pp. 7335-7340. , COI: 1:CAS:528:DC%2BD2cXks1ahtbw%3D, PID: 15187109; Costello, R.T., Sivori, S., Marcenaro, E., Lafage-Pochitaloff, M., Mozziconacci, M.J., Reviron, D., Gastaut, J.A., Moretta, A., Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia (2002) Blood, 99 (10), pp. 3661-3667. , COI: 1:CAS:528:DC%2BD38XjvVGnsLc%3D, PID: 11986221; Halama, N., Braun, M., Kahlert, C., Spille, A., Quack, C., Rahbari, N., Koch, M., Falk, C.S., Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines (2011) Clin Cancer Res, 17 (4), pp. 678-689. , COI: 1:CAS:528:DC%2BC3MXitVSqtbo%3D, PID: 21325295; Balsamo, M., Scordamaglia, F., Pietra, G., Manzini, C., Cantoni, C., Boitano, M., Queirolo, P., Vitale, M., Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity (2009) Proc Natl Acad Sci USA, 106 (49), pp. 20847-20852. , COI: 1:CAS:528:DC%2BC3cXksFOrsA%3D%3D, PID: 19934056; Castriconi, R., Cantoni, C., Della Chiesa, M., Vitale, M., Marcenaro, E., Conte, R., Biassoni, R., Moretta, A., Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells (2003) Proc Natl Acad Sci USA, 100 (7), pp. 4120-4125. , COI: 1:CAS:528:DC%2BD3sXivFWjsr4%3D, PID: 12646700; Pietra, G., Manzini, C., Rivara, S., Vitale, M., Cantoni, C., Petretto, A., Balsamo, M., Mingari, M.C., Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity (2012) Cancer Res, 72 (6), pp. 1407-1415. , COI: 1:CAS:528:DC%2BC38XktVanur4%3D, PID: 22258454; Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., Moretta, A., IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors (2005) J Immunol, 174 (7), pp. 3992-3998. , COI: 1:CAS:528:DC%2BD2MXisVChs78%3D, PID: 15778356; Ghiringhelli, F., Menard, C., Martin, F., Zitvogel, L., The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression (2006) Immunol Rev, 214, pp. 229-238. , COI: 1:CAS:528:DC%2BD28XhtlClsrzJ, PID: 17100888; Ghiringhelli, F., Menard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P.E., Zitvogel, L., CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner (2005) J Exp Med, 202 (8), pp. 1075-1085. , COI: 1:CAS:528:DC%2BD2MXhtFelu7rL, PID: 16230475; Sitrin, J., Ring, A., Garcia, K.C., Benoist, C., Mathis, D., Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2 (2013) J Exp Med, 210 (6), pp. 1153-1165. , COI: 1:CAS:528:DC%2BC3sXpt1Oru70%3D, PID: 23650440; Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., Lehner, F., Korangy, F., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor (2009) Hepatology, 50 (3), pp. 799-807. , COI: 1:CAS:528:DC%2BD1MXhtFKntL%2FI, PID: 19551844; Sprinzl, M.F., Reisinger, F., Puschnik, A., Ringelhan, M., Ackermann, K., Hartmann, D., Schiemann, M., Protzer, U., Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells (2013) Hepatology, 57 (6), pp. 2358-2368. , COI: 1:CAS:528:DC%2BC3sXps1Cit7c%3D, PID: 23424039; Li, T., Yang, Y., Hua, X., Wang, G., Liu, W., Jia, C., Tai, Y., Chen, G., Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO (2012) Cancer Lett, 318 (2), pp. 154-161. , COI: 1:CAS:528:DC%2BC38Xjs1GrtLc%3D, PID: 22182446; Li, T., Yi, S., Liu, W., Jia, C., Wang, G., Hua, X., Tai, Y., Chen, G., Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity (2013) Med Oncol, 30 (3), p. 663. , PID: 23873014; El-Gazzar, A., Groh, V., Spies, T., Immunobiology and conflicting roles of the human NKG2D lymphocyte receptor and its ligands in cancer (2013) J Immunol, 191 (4), pp. 1509-1515. , COI: 1:CAS:528:DC%2BC3sXht1Wiur%2FO, PID: 23913973; Krockenberger, M., Dombrowski, Y., Weidler, C., Ossadnik, M., Honig, A., Hausler, S., Voigt, H., Wischhusen, J., Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D (2008) J Immunol, 180 (11), pp. 7338-7348. , COI: 1:CAS:528:DC%2BD1cXmtVanur0%3D, PID: 18490733; Gubbels, J.A., Felder, M., Horibata, S., Belisle, J.A., Kapur, A., Holden, H., Petrie, S., Patankar, M.S., MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells (2010) Mol Cancer, 9, p. 11. , PID: 20089172; Castriconi, R., Dondero, A., Bellora, F., Moretta, L., Castellano, A., Locatelli, F., Corrias, M.V., Bottino, C., Neuroblastoma-derived TGF-beta1 modulates the chemokine receptor repertoire of human resting NK cells (2013) J Immunol, 190 (10), pp. 5321-5328. , COI: 1:CAS:528:DC%2BC3sXmvFyqur0%3D, PID: 23576682; Balsamo, M., Manzini, C., Pietra, G., Raggi, F., Blengio, F., Mingari, M.C., Varesio, L., Vitale, M., Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC (2013) Eur J Immunol, 43 (10), pp. 2756-2764. , COI: 1:CAS:528:DC%2BC3sXht1WhtrjI, PID: 23913266; Balsamo, M., Vermi, W., Parodi, M., Pietra, G., Manzini, C., Queirolo, P., Lonardi, S., Vitale, M., Melanoma cells become resistant to NK-cell-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor (2012) Eur J Immunol, 42 (7), pp. 1833-1842. , COI: 1:CAS:528:DC%2BC38XnsFyitL4%3D, PID: 22585684; Pogge von Strandmann, E., Simhadri, V.R., von Tresckow, B., Sasse, S., Reiners, K.S., Hansen, H.P., Rothe, A., Engert, A., Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells (2007) Immunity, 27 (6), pp. 965-974. , COI: 1:CAS:528:DC%2BD1cXotFak, PID: 18055229; Reiners, K.S., Topolar, D., Henke, A., Simhadri, V.R., Kessler, J., Sauer, M., Bessler, M., Pogge von Strandmann, E., Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity (2013) Blood, 121 (18), pp. 3658-3665. , COI: 1:CAS:528:DC%2BC3sXot1KhsLw%3D, PID: 23509156; Rosental, B., Brusilovsky, M., Hadad, U., Oz, D., Appel, M.Y., Afergan, F., Yossef, R., Porgador, A., Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44 (2011) J Immunol, 187 (11), pp. 5693-5702. , COI: 1:CAS:528:DC%2BC3MXhsV2hsL3K, PID: 22021614; Horton, N.C., Mathew, S.O., Mathew, P.A., Novel interaction between proliferating cell nuclear antigen and HLA I on the surface of tumor cells inhibits NK cell function through NKp44 (2013) PLoS ONE, 8 (3), p. e59552. , COI: 1:CAS:528:DC%2BC3sXltFyktL4%3D, PID: 23527218; Cantoni, C., Bottino, C., Augugliaro, R., Morelli, L., Marcenaro, E., Castriconi, R., Vitale, M., Moretta, A., Molecular and functional characterization of IRp60, a member of the immunoglobulin superfamily that functions as an inhibitory receptor in human NK cells (1999) Eur J Immunol, 29 (10), pp. 3148-3159. , COI: 1:CAS:528:DyaK1MXmslOmtr0%3D, PID: 10540326; Lankry, D., Rovis, T.L., Jonjic, S., Mandelboim, O., The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells (2013) Eur J Immunol, 43 (8), pp. 2151-2161. , COI: 1:CAS:528:DC%2BC3sXpvVeqtLY%3D, PID: 23640773; Sloma, I., Jiang, X., Eaves, A.C., Eaves, C.J., Insights into the stem cells of chronic myeloid leukemia (2010) Leukemia, 24 (11), pp. 1823-1833. , COI: 1:CAS:528:DC%2BC3cXhtl2gt7vF, PID: 20861912; Horton, S.J., Huntly, B.J., Recent advances in acute myeloid leukemia stem cell biology (2012) Haematologica, 97 (7), pp. 966-974. , COI: 1:CAS:528:DC%2BC3sXjs1Sqtg%3D%3D, PID: 22511496; O’Brien, J.A., Rizzieri, D.A., Leukemic stem cells: a review (2013) Cancer Invest, 31 (4), pp. 215-220. , PID: 23473080; Wiseman, D.H., Greystoke, B.F., Somervaille, T.C., The variety of leukemic stem cells in myeloid malignancy (2014) Oncogene, 33 (24), pp. 3091-3098. , COI: 1:CAS:528:DC%2BC3sXhtVKhtb7E, PID: 23831573; Costello, R.T., Fauriat, C., Sivori, S., Marcenaro, E., Olive, D., NK cells: innate immunity against hematological malignancies? (2004) Trends Immunol, 25 (6), pp. 328-333. , COI: 1:CAS:528:DC%2BD2cXktVKqsL8%3D, PID: 15145323; Carlsten, M., Baumann, B.C., Simonsson, M., Jadersten, M., Forsblom, A.M., Hammarstedt, C., Bryceson, Y.T., Malmberg, K.J., Reduced DNAM-1 expression on bone marrow NK cells associated with impaired killing of CD34 + blasts in myelodysplastic syndrome (2010) Leukemia, 24 (9), pp. 1607-1616. , COI: 1:CAS:528:DC%2BC3cXhtFaiu7%2FE, PID: 20613786; Stringaris, K., Sekine, T., Khoder, A., Alsuliman, A., Razzaghi, B., Sargeant, R., Pavlu, J., Rezvani, K., Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia (2014) Haematologica, 99 (5), pp. 836-847. , PID: 24488563; Curti, A., Trabanelli, S., Salvestrini, V., Baccarani, M., Lemoli, R.M., The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology (2009) Blood, 113 (11), pp. 2394-2401. , COI: 1:CAS:528:DC%2BD1MXjsFKhurg%3D, PID: 19023117; Szczepanski, M.J., Szajnik, M., Welsh, A., Whiteside, T.L., Boyiadzis, M., Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1 (2011) Haematologica, 96 (9), pp. 1302-1309. , COI: 1:CAS:528:DC%2BC38Xhs1KrtbzI, PID: 21606166; Ayala, F., Dewar, R., Kieran, M., Kalluri, R., Contribution of bone microenvironment to leukemogenesis and leukemia progression (2009) Leukemia, 23 (12), pp. 2233-2241. , COI: 1:STN:280:DC%2BD1MfivVWqsw%3D%3D, PID: 19727127; Mussai, F., De Santo, C., Abu-Dayyeh, I., Booth, S., Quek, L., McEwen-Smith, R.M., Qureshi, A., Cerundolo, V., Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment (2013) Blood, 122 (5), pp. 749-758. , COI: 1:CAS:528:DC%2BC3sXht1OmsbrF, PID: 23733335; Duan, C.W., Shi, J., Chen, J., Wang, B., Yu, Y.H., Qin, X., Zhou, X.C., Hong, D.L., Leukemia propagating cells rebuild an evolving niche in response to therapy (2014) Cancer Cell, 25 (6), pp. 778-793. , COI: 1:CAS:528:DC%2BC2cXhtVSlt7nO, PID: 24937459; Tsimberidou, A.M., Estey, E., Wen, S., Pierce, S., Kantarjian, H., Albitar, M., Kurzrock, R., The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes (2008) Cancer, 113 (7), pp. 1605-1613. , PID: 18683214; Kornblau, S.M., McCue, D., Singh, N., Chen, W., Estrov, Z., Coombes, K.R., Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia (2010) Blood, 116 (20), pp. 4251-4261. , COI: 1:CAS:528:DC%2BC3cXhsFChsr%2FP, PID: 20679526; Vitale, C., Ambrosini, P., Montaldo, E., Ballerini, F., Moretta, L., Mingari, M.C., IL-1beta-releasing human acute myeloid leukemia blasts modulate natural killer cell differentiation from CD34 + precursors (2015) Haematologica, 100 (2), pp. e42-e45. , COI: 1:CAS:528:DC%2BC2MXjtFKntLg%3D, PID: 25344527; Rosenberg, S.A., Lotze, M.T., Muul, L.M., Leitman, S., Chang, A.E., Ettinghausen, S.E., Matory, Y.L., Vetto, J.T., Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer (1985) N Engl J Med, 313 (23), pp. 1485-1492. , COI: 1:STN:280:DyaL28%2FktVehug%3D%3D, PID: 3903508; Law, T.M., Motzer, R.J., Mazumdar, M., Sell, K.W., Walther, P.J., O’Connell, M., Khan, A., Bajorin, D.F., Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma (1995) Cancer, 76 (5), pp. 824-832. , COI: 1:CAS:528:DyaK2MXosVejsLk%3D, PID: 8625186; Bordignon, C., Carlo-Stella, C., Colombo, M.P., De Vincentiis, A., Lanata, L., Lemoli, R.M., Locatelli, F., Tura, S., Cell therapy: achievements and perspectives (1999) Haematologica, 84 (12), pp. 1110-1149. , COI: 1:CAS:528:DC%2BD3cXhtV2rs7Y%3D, PID: 10586214; Cheng, M., Chen, Y., Xiao, W., Sun, R., Tian, Z., NK cell-based immunotherapy for malignant diseases (2013) Cell Mol Immunol, 10 (3), pp. 230-252. , COI: 1:CAS:528:DC%2BC3sXntF2jsbg%3D, PID: 23604045; Parkhurst, M.R., Riley, J.P., Dudley, M.E., Rosenberg, S.A., Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression (2011) Clin Cancer Res, 17 (19), pp. 6287-6297. , COI: 1:CAS:528:DC%2BC3MXht1Ggs7nE, PID: 21844012; Miller, J.S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S.A., Yun, G.H., Fautsch, S.K., McKenna, D., McGlave, P.B., Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer (2005) Blood, 105 (8), pp. 3051-3057. , COI: 1:CAS:528:DC%2BD2MXjtlSmtb0%3D, PID: 15632206; Geller, M.A., Cooley, S., Judson, P.L., Ghebre, R., Carson, L.F., Argenta, P.A., Jonson, A.L., Miller, J.S., A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer (2011) Cytotherapy, 13 (1), pp. 98-107. , COI: 1:CAS:528:DC%2BC3cXhsFGltrjI, PID: 20849361; Iliopoulou, E.G., Kountourakis, P., Karamouzis, M.V., Doufexis, D., Ardavanis, A., Baxevanis, C.N., Rigatos, G., Perez, S.A., A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer (2010) Cancer Immunol Immunother, 59 (12), pp. 1781-1789. , PID: 20703455; Wennerberg, E., Kremer, V., Childs, R., Lundqvist, A., CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo (2015) Cancer Immunol Immunother, 64 (2), pp. 225-235. , COI: 1:CAS:528:DC%2BC2cXhvFSntbjF, PID: 25344904; Moustaki, A., Argyropoulos, K.V., Baxevanis, C.N., Papamichail, M., Perez, S.A., Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function (2011) Cancer Immunol Immunother, 60 (12), pp. 1683-1695. , COI: 1:CAS:528:DC%2BC3MXhsFantrrP, PID: 21706285; Vacca, P., Martini, S., Garelli, V., Passalacqua, G., Moretta, L., Mingari, M.C., NK cells from malignant pleural effusions are not anergic but produce cytokines and display strong antitumor activity on short-term IL-2 activation (2013) Eur J Immunol, 43 (2), pp. 550-561. , COI: 1:CAS:528:DC%2BC3sXnslelug%3D%3D, PID: 23192659; Vacca, P., Martini, S., Mingari, M.C., Moretta, L., NK cells from malignant pleural effusions are potent antitumor effectors: a clue for adoptive immunotherapy? (2013) Oncoimmunology, 2 (4), p. e23638. , PID: 23734317; Terme, M., Fridman, W.H., Tartour, E., NK cells from pleural effusions are potent antitumor effector cells (2013) Eur J Immunol, 43 (2), pp. 331-334. , COI: 1:CAS:528:DC%2BC3sXisVSlu70%3D, PID: 23322344; Ni, J., Miller, M., Stojanovic, A., Garbi, N., Cerwenka, A., Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors (2012) J Exp Med, 209 (13), pp. 2351-2365. , COI: 1:CAS:528:DC%2BC38XhvVOitbzK, PID: 23209317; Ardolino, M., Azimi, C.S., Iannello, A., Trevino, T.N., Horan, L., Zhang, L., Deng, W., Raulet, D.H., Cytokine therapy reverses NK cell anergy in MHC-deficient tumors (2014) J Clin Invest, 124 (11), pp. 4781-4794. , COI: 1:CAS:528:DC%2BC2cXhvFSntr%2FN, PID: 25329698; Vacchelli, E., Galluzzi, L., Eggermont, A., Galon, J., Tartour, E., Zitvogel, L., Kroemer, G., Trial watch: immunostimulatory cytokines (2012) Oncoimmunology, 1 (4), pp. 493-506. , PID: 22754768; Tarhini, A.A., Millward, M., Mainwaring, P., Kefford, R., Logan, T., Pavlick, A., Kathman, S.J., Kirkwood, J.M., A phase 2, randomized study of SB-485232, rhIL-18, in patients with previously untreated metastatic melanoma (2009) Cancer, 115 (4), pp. 859-868. , COI: 1:CAS:528:DC%2BD1MXjtF2qsLk%3D, PID: 19140204; Conlon, K.C., Lugli, E., Welles, H.C., Rosenberg, S.A., Fojo, A.T., Morris, J.C., Fleisher, T.A., Waldmann, T.A., Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer (2015) J Clin Oncol, 33 (1), pp. 74-82. , COI: 1:CAS:528:DC%2BC2MXjslertbY%3D, PID: 25403209; Terme, M., Ullrich, E., Delahaye, N.F., Chaput, N., Zitvogel, L., Natural killer cell-directed therapies: moving from unexpected results to successful strategies (2008) Nat Immunol, 9 (5), pp. 486-494. , COI: 1:CAS:528:DC%2BD1cXkvVOqurc%3D, PID: 18425105; Krieg, S., Ullrich, E., Novel immune modulators used in hematology: impact on NK cells (2012) Front Immunol, 3, p. 388. , PID: 23316191; Romagne, F., Andre, P., Spee, P., Zahn, S., Anfossi, N., Gauthier, L., Capanni, M., Wagtmann, N., Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells (2009) Blood, 114 (13), pp. 2667-2677. , COI: 1:CAS:528:DC%2BD1MXht1eit7vL, PID: 19553639; Kohrt, H.E., Thielens, A., Marabelle, A., Sagiv-Barfi, I., Sola, C., Chanuc, F., Fuseri, N., Andre, P., Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies (2014) Blood, 123 (5), pp. 678-686. , COI: 1:CAS:528:DC%2BC2cXisVGqtLg%3D, PID: 24326534; Oberoi, P., Wels, W.S., Arming NK cells with enhanced antitumor activity: CARs and beyond (2013) Oncoimmunology, 2 (8), p. e25220. , PID: 24167761; Reisner, Y., Kapoor, N., Kirkpatrick, D., Pollack, M.S., Cunningham-Rundles, S., Dupont, B., Hodes, M.Z., O’Reilly, R.J., Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells (1983) Blood, 61 (2), pp. 341-348. , COI: 1:STN:280:DyaL3s7gtFOltw%3D%3D, PID: 6217853; Locatelli, F., Merli, P., Rutella, S., At the bedside: innate immunity as an immunotherapy tool for hematological malignancies (2013) J Leukoc Biol, 94 (6), pp. 1141-1157. , PID: 24096380; Aversa, F., Tabilio, A., Terenzi, A., Velardi, A., Falzetti, F., Giannoni, C., Iacucci, R., Gambelunghe, C., Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum (1994) Blood, 84 (11), pp. 3948-3955. , COI: 1:STN:280:DyaK2M%2Fjs1ejtA%3D%3D, PID: 7524753; Aversa, F., Tabilio, A., Velardi, A., Cunningham, I., Terenzi, A., Falzetti, F., Ruggeri, L., Martelli, M.F., Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype (1998) N Engl J Med, 339 (17), pp. 1186-1193. , COI: 1:STN:280:DyaK1cvkt1yqsw%3D%3D, PID: 9780338; Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W.D., Tosti, A., Posati, S., Velardi, A., Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants (2002) Science, 295 (5562), pp. 2097-2100. , COI: 1:CAS:528:DC%2BD38Xit1Ohurs%3D, PID: 11896281; Moretta, L., Locatelli, F., Pende, D., Marcenaro, E., Mingari, M.C., Moretta, A., Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation (2011) Blood, 117 (3), pp. 764-771. , COI: 1:CAS:528:DC%2BC3MXhslKksro%3D, PID: 20889923; Locatelli, F., Pende, D., Mingari, M.C., Bertaina, A., Falco, M., Moretta, A., Moretta, L., Cellular and molecular basis of haploidentical hematopoietic stem cell transplantation in the successful treatment of high-risk leukemias: role of alloreactive NK cells (2013) Front Immunol, 4, p. 15. , PID: 23378843; Pende, D., Bottino, C., Castriconi, R., Cantoni, C., Marcenaro, S., Rivera, P., Spaggiari, G.M., Moretta, A., PVR (CD155) and nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis (2005) Mol Immunol, 42 (4), pp. 463-469. , COI: 1:CAS:528:DC%2BD2cXhtVyktrvI, PID: 15607800; Pende, D., Marcenaro, S., Falco, M., Martini, S., Bernardo, M.E., Montagna, D., Romeo, E., Moretta, A., Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity (2009) Blood, 113 (13), pp. 3119-3129. , COI: 1:CAS:528:DC%2BD1MXktFWnt7o%3D, PID: 18945967; Pende, D., Spaggiari, G.M., Marcenaro, S., Martini, S., Rivera, P., Capobianco, A., Falco, M., Moretta, L., Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the poliovirus receptor (CD155) and nectin-2 (CD112) (2005) Blood, 105 (5), pp. 2066-2073. , COI: 1:CAS:528:DC%2BD2MXitVOnsbk%3D, PID: 15536144; Chewning, J.H., Gudme, C.N., Hsu, K.C., Selvakumar, A., Dupont, B., KIR2DS1-positive NK cells mediate alloresponse against the C2 HLA-KIR ligand group in vitro (2007) J Immunol, 179 (2), pp. 854-868. , COI: 1:CAS:528:DC%2BD2sXnt1Wmtro%3D, PID: 17617576; Venstrom, J.M., Pittari, G., Gooley, T.A., Chewning, J.H., Spellman, S., Haagenson, M., Gallagher, M.M., Hsu, K.C., HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1 (2012) N Engl J Med, 367 (9), pp. 805-816. , COI: 1:CAS:528:DC%2BC38XhtlGktLzK, PID: 22931314; Symons, H.J., Leffell, M.S., Rossiter, N.D., Zahurak, M., Jones, R.J., Fuchs, E.J., Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation (2010) Biol Blood Marrow Transplant, 16 (4), pp. 533-542. , PID: 19961944; Cooley, S., Weisdorf, D.J., Guethlein, L.A., Klein, J.P., Wang, T., Le, C.T., Marsh, S.G., Miller, J.S., Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia (2010) Blood, 116 (14), pp. 2411-2419. , COI: 1:CAS:528:DC%2BC3cXhtlyqt7nN, PID: 20581313; Oevermann, L., Michaelis, S.U., Mezger, M., Lang, P., Toporski, J., Bertaina, A., Zecca, M., Handgretinger, R., KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL (2014) Blood, 124 (17), pp. 2744-2747. , COI: 1:CAS:528:DC%2BC2cXhvVygsrnI, PID: 25115891; Stern, M., Ruggeri, L., Mancusi, A., Bernardo, M.E., de Angelis, C., Bucher, C., Locatelli, F., Velardi, A., Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor (2008) Blood, 112 (7), pp. 2990-2995. , COI: 1:CAS:528:DC%2BD1cXht1Srtb3P, PID: 18492955; Ichinohe, T., Teshima, T., Matsuoka, K., Maruya, E., Saji, H., Fetal-maternal microchimerism: impact on hematopoietic stem cell transplantation (2005) Curr Opin Immunol, 17 (5), pp. 546-552. , COI: 1:CAS:528:DC%2BD2MXpslyhsrg%3D, PID: 16084712; Dutta, P., Burlingham, W.J., Tolerance to noninherited maternal antigens in mice and humans (2009) Curr Opin Organ Transplant, 14 (4), pp. 439-447. , PID: 19512930; Handgretinger, R., New approaches to graft engineering for haploidentical bone marrow transplantation (2012) Semin Oncol, 39 (6), pp. 664-673. , COI: 1:CAS:528:DC%2BC38XhvVSmtLjF, PID: 23206843; Locatelli, F., Moretta, F., Brescia, L., Merli, P., Natural killer cells in the treatment of high-risk acute leukaemia (2014) Semin Immunol, 26 (2), pp. 173-179. , COI: 1:CAS:528:DC%2BC2cXjvFWjsLc%3D, PID: 24613727; Norell, H., Moretta, A., Silva-Santos, B., Moretta, L., At the bench: preclinical rationale for exploiting NK cells and gammadelta T lymphocytes for the treatment of high-risk leukemias (2013) J Leukoc Biol, 94 (6), pp. 1123-1139. , PID: 24108703; Airoldi, I., Bertaina, A., Prigione, I., Zorzoli, A., Pagliara, D., Cocco, C., Meazza, R., Locatelli, F., gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta +/CD19 + lymphocytes (2015) Blood, 125 (15), pp. 2349-2358. , COI: 1:CAS:528:DC%2BC2MXmsl2htL4%3D, PID: 25612623; Bertaina, A., Merli, P., Rutella, S., Pagliara, D., Bernardo, M.E., Masetti, R., Pende, D., Locatelli, F., HLA-haploidentical stem cell transplantation after removal of alphabeta + T and B cells in children with nonmalignant disorders (2014) Blood, 124 (5), pp. 822-826. , COI: 1:CAS:528:DC%2BC2cXhtlKms73P, PID: 24869942
PY - 2016
Y1 - 2016
N2 - It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host’s defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment. © 2015, Springer-Verlag Berlin Heidelberg.
AB - It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host’s defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment. © 2015, Springer-Verlag Berlin Heidelberg.
KW - Acute leukemias
KW - Hematopoietic stem cell transplantation
KW - Immunotherapy
KW - Innate lymphoid cells
KW - NK cells
KW - Tumor microenvironment
KW - adoptive immunotherapy
KW - biological model
KW - cell communication
KW - cytotoxicity
KW - hematopoietic stem cell transplantation
KW - human
KW - immunology
KW - leukemia
KW - natural killer cell
KW - Neoplasms
KW - procedures
KW - transplantation
KW - tumor microenvironment
KW - Cell Communication
KW - Cytotoxicity, Immunologic
KW - Hematopoietic Stem Cell Transplantation
KW - Humans
KW - Immunotherapy, Adoptive
KW - Killer Cells, Natural
KW - Leukemia
KW - Models, Immunological
KW - Tumor Microenvironment
U2 - 10.1007/s00262-015-1744-y
DO - 10.1007/s00262-015-1744-y
M3 - Article
SN - 0340-7004
VL - 65
SP - 465
EP - 476
JO - Cancer Immunology and Immunotherapy
JF - Cancer Immunology and Immunotherapy
IS - 4
ER -