Abstract
Original language | English |
---|---|
Journal | Mol. Autism |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- 7q11.23 duplication syndrome
- Autism spectrum disorder
- GTF2I
- HDAC inhibitors
- High-throughput screening
- Induced pluripotent stem cells
- Intellectual disability
- Neurons
Fingerprint
Dive into the research topics of 'High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons: Molecular Autism'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons : Molecular Autism. / Cavallo, F.; Troglio, F.; Fagà, G. et al.
In: Mol. Autism, Vol. 11, No. 1, 2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons
T2 - Molecular Autism
AU - Cavallo, F.
AU - Troglio, F.
AU - Fagà, G.
AU - Fancelli, D.
AU - Shyti, R.
AU - Trattaro, S.
AU - Zanella, M.
AU - D’Agostino, G.
AU - Hughes, J.M.
AU - Cera, M.R.
AU - Pasi, M.
AU - Gabriele, M.
AU - Lazzarin, M.
AU - Mihailovich, M.
AU - Kooy, F.
AU - Rosa, A.
AU - Mercurio, C.
AU - Varasi, M.
AU - Testa, Giuseppe
N1 - Export Date: 2 March 2021 Correspondence Address: Testa, G.; High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, Via Adamello 16, Italy; email: giuseppe.testa@unimi.it Funding details: European Research Council, ERC, 616441, 713652 Funding details: Fondazione Telethon, GGP14265, GGP19226 Funding details: Consiglio Nazionale delle Ricerche, CNR Funding details: Fondazione Umberto Veronesi Funding details: Regione Lombardia, RICIND-12-TESTA Funding text 1: This work was supported by European Research Council (ERC CoG 616441 – DISEASEAVATARS and ERC PoC 713652 – LSDiASD to GT); Telethon (GGP14265 and GGP19226 to GT); Italian National Research Council (CNR) (Epigen Flagship Project to GT); Regione Lombardia (RICIND-12-TESTA to GT); Fondazione Istituto Europeo di Oncologia – Centro Cardiologico Monzino (IEO-CCM 2018) (to FT); Fondazione Umberto Veronesi (to RS and GDA). ST, MZ and GDA conducted this study as fulfillment of their Ph.D. within the European School of Molecular Medicine (SEMM), Milan, Italy. Acknowledgements References: Lai, M.-C., Lombardo, M.V., Baron-Cohen, S., Autism (2014) Lancet, 383, pp. 896-910. , PID: 24074734; Ronemus, M., Iossifov, I., Levy, D., Wigler, M., The role of de novo mutations in the genetics of autism spectrum disorders (2014) Nat Rev Genet, 15, pp. 133-141. , COI: 1:CAS:528:DC%2BC2cXotFamsQ%3D%3D, PID: 24430941; Van der Aa, N., Rooms, L., Vandeweyer, G., van den Ende, J., Reyniers, E., Fichera, M., Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome (2009) Eur J Med Genet, 52, pp. 94-100. , PID: 19249392; Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T., Moreno-De-Luca, D., Multiple recurrent De Novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism (2011) Neuron, 70, pp. 863-885. , COI: 1:CAS:528:DC%2BC3MXnsVyrt7Y%3D, PID: 21658581; Pober, B.R., Williams-Beuren syndrome (2010) N Engl J Med, 362, pp. 239-252. , COI: 1:CAS:528:DC%2BC3cXosFChsQ%3D%3D, PID: 20089974; Lee, G., Ramirez, C.N., Kim, H., Zeltner, N., Liu, B., Radu, C., Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression (2012) Nat Biotechnol, 30, pp. 1244-1248. , COI: 1:CAS:528:DC%2BC38Xhs1ymt7bL, PID: 23159879; Li, J., Ma, J., Meng, G., Lin, H., Wu, S., Wang, J., BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells (2016) Stem Cell Res, 17, pp. 212-221. , COI: 1:CAS:528:DC%2BC28XhsVyqur3E, PID: 27591477; Cayo, M.A., Mallanna, S.K., Di Furio, F., Jing, R., Tolliver, L.B., Bures, M., A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia (2017) Cell Stem Cell, 20 (478-489); Kondo, T., Imamura, K., Funayama, M., Tsukita, K., Miyake, M., Ohta, A., iPSC-Based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease (2017) Cell Rep, 21, pp. 2304-2312. , COI: 1:CAS:528:DC%2BC2sXhvVOrs7fN, PID: 29166618; Tranfaglia, M.R., Thibodeaux, C., Mason, D.J., Brown, D., Roberts, I., Smith, R., Repurposing available drugs for neurodevelopmental disorders: the fragile X experience (2019) Neuropharmacology, 147, pp. 74-86. , COI: 1:CAS:528:DC%2BC1cXpvVKqsrc%3D, PID: 29792283; Gogliotti, R.G., Niswender, C.M., A coordinated attack: Rett syndrome therapeutic development (2019) Trends Pharmacol Sci, 40, pp. 233-236. , COI: 1:CAS:528:DC%2BC1MXlvVWgtrg%3D, PID: 30905360; Ververis, K., Hiong, A., Karagiannis, T.C., Licciardi, P.V., Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents (2013) Biol Targets Ther, 7, pp. 47-60. , COI: 1:CAS:528:DC%2BC3sXktFCms70%3D; Bolden, J.E., Peart, M.J., Johnstone, R.W., Anticancer activities of histone deacetylase inhibitors (2006) Nat Rev Drug Discov, 5, pp. 769-784. , COI: 1:CAS:528:DC%2BD28XptVCltrY%3D, PID: 16955068; Rasheed, W.K., Johnstone, R.W., Prince, H.M., Histone deacetylase inhibitors in cancer therapy (2007) Expert Opin Investig Drugs, 16, pp. 659-678. , COI: 1:CAS:528:DC%2BD2sXks1aht78%3D, PID: 17461739; Ecker, J., Witt, O., Milde, T., Targeting of histone deacetylases in brain tumors (2013) CNS Oncol, 2, pp. 359-376. , COI: 1:CAS:528:DC%2BC3sXhtVSitL3M, PID: 25054580; Simonini, M.V., Camargo, L.M., Dong, E., Maloku, E., Veldic, M., Costa, E., From the cover: the benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases (2006) Proc Natl Acad Sci, 103, pp. 1587-1592. , COI: 1:CAS:528:DC%2BD28Xhs1Gnsbs%3D, PID: 16432198; Basu, T., O’Riordan, K.J., Schoenike, B.A., Khan, N.N., Wallace, E.P., Rodriguez, G., Histone deacetylase inhibitors restore normal hippocampal synaptic plasticity and seizure threshold in a mouse model of Tuberous Sclerosis Complex (2019) Sci Rep, 9, p. 5266. , PID: 30918308, COI: 1:CAS:528:DC%2BC1MXotlaqu70%3D; Roy, A.L., Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later (2012) Gene, 492, pp. 32-41. , COI: 1:CAS:528:DC%2BC3MXhs1KrurrI, PID: 22037610; Malenfant, P., Liu, X., Hudson, M.L., Qiao, Y., Hrynchak, M., Riendeau, N., Association of GTF2i in the Williams-Beuren syndrome critical region with autism spectrum disorders (2012) J Autism Dev Disord, 42, pp. 1459-1469. , PID: 22048961; Mervis, C.B., Dida, J., Lam, E., Crawford-Zelli, N.A., Young, E.J., Henderson, D.R., Duplication of GTF2I results in separation anxiety in mice and humans (2012) Am J Hum Genet, 90, pp. 1064-1070. , COI: 1:CAS:528:DC%2BC38XmvFGqtLY%3D, PID: 22578324; Antonell, A., Del Campo, M., Magano, L.F., Kaufmann, L., Martinez de la Iglesia, J., Gallastegui, F., Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile (2010) J Med Genet, 47, pp. 312-320. , COI: 1:CAS:528:DC%2BC3cXotVWlt74%3D, PID: 19897463; Adamo, A., Atashpaz, S., Germain, P.-L., Zanella, M., D’Agostino, G., Albertin, V., 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages (2015) Nat Genet, 47, pp. 132-141. , COI: 1:CAS:528:DC%2BC2cXitFKlu73N, PID: 25501393; Merla, G., Brunetti-Pierri, N., Micale, L., Fusco, C., Copy number variants at Williams-Beuren syndrome 7q11.23 region (2010) Hum Genet, 128, pp. 3-26. , COI: 1:CAS:528:DC%2BC3cXntlKqs7Y%3D, PID: 20437059; Lalli, M.A., Jang, J., Park, J.H.C., Wang, Y., Guzman, E., Zhou, H., Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways (2016) Hum Mol Genet, 25, pp. 1294-1306. , COI: 1:CAS:528:DC%2BC28Xht1CiurbF, PID: 26755828; Zanella, M., Vitriolo, A., Andirko, A., Martins, P.T., Sturm, S., O’Rourke, T., Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying self-domestication (2019) Sci Adv, 5, p. eaaw7908. , COI: 1:CAS:528:DC%2BB3cXhtlalu77M, PID: 31840056; Schubert, C., The genomic basis of the Williams-Beuren syndrome (2009) Cell Mol Life Sci, 66, pp. 1178-1197. , COI: 1:CAS:528:DC%2BD1MXjslWrsbs%3D, PID: 19039520; Sonenberg, N., Hinnebusch, A.G., Regulation of translation initiation in eukaryotes: mechanisms and biological targets (2009) Cell, 136, pp. 731-745. , COI: 1:CAS:528:DC%2BD1MXkvFGksbc%3D, PID: 19239892; Capossela, S., Muzio, L., Bertolo, A., Bianchi, V., Dati, G., Chaabane, L., Growth defects and impaired cognitive–behavioral abilities in mice with knockout for Eif4h, a gene located in the mouse homolog of the Williams-Beuren syndrome critical region (2012) Am J Pathol, 180, pp. 1121-1135. , COI: 1:CAS:528:DC%2BC38XksFaqt7w%3D, PID: 22234171; Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Rapid single-step induction of functional neurons from human pluripotent stem cells (2013) Neuron, 78, pp. 785-798. , COI: 1:CAS:528:DC%2BC3sXptV2nsr8%3D, PID: 23764284; Kim, S.-I., Oceguera-Yanez, F., Sakurai, C., Nakagawa, M., Yamanaka, S., Woltjen, K., Inducible transgene expression in human iPS cells using versatile all-in-one piggyBac transposons (2015) Induc pluripotent stem IPS cells, pp. 111-131. , Turksen K, Nagy A, (eds), Springer, New York: (cited 2020 Sep 24; Lenzi, J., Pagani, F., De Santis, R., Limatola, C., Bozzoni, I., Di Angelantonio, S., Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases (2016) Stem Cell Res, 17, pp. 140-147. , COI: 1:CAS:528:DC%2BC28XhtValtrvL, PID: 27318155; Chailangkarn, T., Trujillo, C.A., Freitas, B.C., Hrvoj-Mihic, B., Herai, R.H., Yu, D.X., A human neurodevelopmental model for Williams syndrome (2016) Nature, 536, pp. 338-343. , COI: 1:CAS:528:DC%2BC28XhtlejurzO, PID: 27509850; Morris, C.A., Mervis, C.B., Hobart, H.H., Gregg, R.G., Bertrand, J., Ensing, G.J., GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region (2003) Am J Med Genet, 123A, pp. 45-59. , PID: 14556246; Borralleras, C., Sahun, I., Pérez-Jurado, L.A., Campuzano, V., Intracisternal Gtf2i gene therapy ameliorates deficits in cognition and synaptic plasticity of a mouse model of Williams-Beuren syndrome (2015) Mol Ther, 23, pp. 1691-1699. , COI: 1:CAS:528:DC%2BC2MXhsVymt77L, PID: 26216516; Young, E.J., Lipina, T., Tam, E., Mandel, A., Clapcote, S.J., Bechard, A.R., Reduced fear and aggression and altered serotonin metabolism in Gtf2ird1-targeted mice (2008) Genes Brain Behav, 7, pp. 224-234. , COI: 1:CAS:528:DC%2BD1cXks1Sqt70%3D, PID: 17680805; Crespi, B.J., Hurd, P.L., Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population (2014) BMC Neurosci, 15, p. 127. , PID: 25429715, COI: 1:CAS:528:DC%2BC2MXit1Kqt78%3D; Ho, S.-M., Hartley, B.J., Tcw, J., Beaumont, M., Stafford, K., Slesinger, P.A., Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells (2016) Methods, 101, pp. 113-124. , COI: 1:CAS:528:DC%2BC2MXhvFeqsr%2FM, PID: 26626326; Lane, A.A., Chabner, B.A., Histone deacetylase inhibitors in cancer therapy (2009) J Clin Oncol, 27, pp. 5459-5468. , COI: 1:CAS:528:DC%2BD1MXhsFKkt7vE, PID: 19826124; Slingerland, M., Guchelaar, H.-J., Gelderblom, H., Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors (2014) Anticancer Drugs, 25, pp. 140-149. , COI: 1:CAS:528:DC%2BC3sXhvFOms7vJ, PID: 24185382; Cuadrado-Tejedor, M., Pérez-González, M., García-Muñoz, C., Muruzabal, D., García-Barroso, C., Rabal, O., Taking advantage of the selectivity of histone deacetylases and phosphodiesterase inhibitors to design better therapeutic strategies to treat Alzheimer’s disease (2019) Front Aging Neurosci, 11, p. 149. , COI: 1:CAS:528:DC%2BB3cXjs1OgtL0%3D, PID: 31281249; Guan, J.-S., Haggarty, S.J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., HDAC2 negatively regulates memory formation and synaptic plasticity (2009) Nature, 459, pp. 55-60. , COI: 1:CAS:528:DC%2BD1MXlsF2ltro%3D, PID: 19424149; Harrison, I.F., Smith, A.D., Dexter, D.T., Pathological histone acetylation in Parkinson’s disease: neuroprotection and inhibition of microglial activation through SIRT 2 inhibition (2018) Neurosci Lett, 666, pp. 48-57. , COI: 1:CAS:528:DC%2BC2sXitVehtbjN, PID: 29273397; Gundersen, B.B., Blendy, J.A., Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety (2009) Neuropharmacology, 57, pp. 67-74. , COI: 1:CAS:528:DC%2BD1MXnt1Grt70%3D, PID: 19393671; Denk, F., Huang, W., Sidders, B., Bithell, A., Crow, M., Grist, J., HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain (2013) Pain, 154, pp. 1668-1679. , COI: 1:CAS:528:DC%2BC3sXhtVSlsb7L, PID: 23693161; Foley, A.G., Gannon, S., Rombach-Mullan, N., Prendergast, A., Barry, C., Cassidy, A.W., Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder (2012) Neuropharmacology, 63, pp. 750-760. , COI: 1:CAS:528:DC%2BC38XptFCksrY%3D; Ma, K., Qin, L., Matas, E., Duffney, L.J., Liu, A., Yan, Z., Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism (2018) Neuropsychopharmacology, 43, pp. 1779-1788. , COI: 1:CAS:528:DC%2BC1cXht1Cgt7jK, PID: 29760409; Nageshappa, S., Carromeu, C., Trujillo, C.A., Mesci, P., Espuny-Camacho, I., Pasciuto, E., Altered neuronal network and rescue in a human MECP2 duplication model (2016) Mol Psychiatry, 21, pp. 178-188. , COI: 1:CAS:528:DC%2BC2MXhsVOmtrzE, PID: 26347316; Palmieri, D., Lockman, P.R., Thomas, F.C., Hua, E., Herring, J., Hargrave, E., Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks (2009) Clin Cancer Res, 15, pp. 6148-6157. , COI: 1:CAS:528:DC%2BD1MXhtF2lurzF, PID: 19789319; Coni, S., Mancuso, A.B., Di Magno, L., Sdruscia, G., Manni, S., Serrao, S.M., Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma (2017) Sci Rep, 7, p. 44079. , PID: 28276480; Rai, M., Soragni, E., Chou, C.J., Barnes, G., Jones, S., Rusche, J.R., Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model (2010) PLoS ONE, 5. , PID: 20098685, COI: 1:CAS:528:DC%2BC3cXht1emtro%3D; Marks, P.A., Breslow, R., Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug (2007) Nat Biotechnol, 25, pp. 84-90. , COI: 1:CAS:528:DC%2BD2sXis1GrsQ%3D%3D, PID: 17211407; Wahaib, K., Beggs, A.E., Campbell, H., Kodali, L., Ford, P.D., Panobinostat: a histone deacetylase inhibitor for the treatment of relapsed or refractory multiple myeloma (2016) Am J Health Syst Pharm, 73, pp. 441-450. , PID: 27001985; Lee, H.-Z., Kwitkowski, V.E., Del Valle, P.L., Ricci, M.S., Saber, H., Habtemariam, B.A., FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma (2015) Clin Cancer Res, 21, pp. 2666-2670. , COI: 1:CAS:528:DC%2BC2MXhtVajurfM, PID: 25802282; Zain, J., Jain, S., Romidepsin in the treatment of cutaneous T-cell lymphoma (2011) J Blood Med, 2, pp. 37-47. , PID: 22287862, COI: 1:CAS:528:DC%2BC3MXltVWrtL4%3D; Liston, D.R., Davis, M., Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies (2017) Clin Cancer Res, 23, pp. 3489-3498. , COI: 1:CAS:528:DC%2BC2sXhtFKiu7zM, PID: 28364015; Thomas, E., Involvement of HDAC1 and HDAC3 in the pathology of polyglutamine disorders: therapeutic implications for selective HDAC1/HDAC3 inhibitors (2014) Pharmaceuticals, 7, pp. 634-661. , COI: 1:CAS:528:DC%2BC2cXhs1CqtrbI, PID: 24865773; Simões-Pires, C., Zwick, V., Nurisso, A., Schenker, E., Carrupt, P.-A., Cuendet, M., HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? (2013) Mol Neurodegener, 8, p. 7. , PID: 23356410, COI: 1:CAS:528:DC%2BC3sXnvVCjtbg%3D; Thomas, E.A., Coppola, G., Desplats, P.A., Tang, B., Soragni, E., Burnett, R., The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice (2008) Proc Natl Acad Sci, 105, pp. 15564-15569. , COI: 1:CAS:528:DC%2BD1cXht1Gnt7rP, PID: 18829438; Steffan, J.S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila (2001) Nature, 413, pp. 739-743. , COI: 1:CAS:528:DC%2BD3MXnvFegsLY%3D, PID: 11607033; Peart, M.J., Smyth, G.K., van Laar, R.K., Bowtell, D.D., Richon, V.M., Marks, P.A., Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors (2005) Proc Natl Acad Sci, 102, pp. 3697-3702. , COI: 1:CAS:528:DC%2BD2MXisVOgsb0%3D, PID: 15738394; Chueh, A.C., Tse, J.W.T., Tögel, L., Mariadason, J.M., Mechanisms of histone deacetylase inhibitor-regulated gene expression in cancer cells (2015) Antioxid Redox Signal, 23, pp. 66-84. , COI: 1:CAS:528:DC%2BC2MXhtVakt73P, PID: 24512308; López-Tobón, A., Villa, C.E., Cheroni, C., Trattaro, S., Caporale, N., Conforti, P., Human cortical organoids expose a differential function of GSK3 on cortical neurogenesis (2019) Stem Cell Rep, 13, pp. 847-861. , COI: 1:CAS:528:DC%2BC1MXhvFCktbfF; Connolly, R.M., Rudek, M.A., Piekarz, R., Entinostat: a promising treatment option for patients with advanced breast cancer (2017) Future Oncol, 13, pp. 1137-1148. , COI: 1:CAS:528:DC%2BC2sXhtVKgsbrE, PID: 28326839; Venugopal, B., Baird, R., Kristeleit, R.S., Plummer, R., Cowan, R., Stewart, A., A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors (2013) Clin Cancer Res, 19, pp. 4262-4272. , COI: 1:CAS:528:DC%2BC3sXht1amt7zP, PID: 23741066; Razak, A.R.A., Hotte, S.J., Siu, L.L., Chen, E.X., Hirte, H.W., Powers, J., Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours (2011) Br J Cancer, 104, pp. 756-762. , COI: 1:CAS:528:DC%2BC3MXislOktLk%3D, PID: 21285985; Mu, S., Kuroda, Y., Shibayama, H., Hino, M., Tajima, T., Corrado, C., Panobinostat PK/PD profile in combination with bortezomib and dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma (2016) Eur J Clin Pharmacol, 72, pp. 153-161. , COI: 1:CAS:528:DC%2BC2MXhslCqtrrN, PID: 26494130; Steele, N.L., Plumb, J.A., Vidal, L., Tjørnelund, J., Knoblauch, P., Buhl-Jensen, P., Pharmacokinetic and pharmacodynamic properties of an oral formulation of the histone deacetylase inhibitor Belinostat (PXD101) (2011) Cancer Chemother Pharmacol, 67, pp. 1273-1279. , COI: 1:CAS:528:DC%2BC3MXmsFGhsrY%3D, PID: 20706839; Furlan, A., Monzani, V., Reznikov, L.L., Leoni, F., Fossati, G., Modena, D., Pharmacokinetics, safety and inducible cytokine responses during a phase I trial of the oral histone deacetylase inhibitor ITF2357 (Givinostat) (2011) Mol Med, 17, pp. 353-362. , COI: 1:CAS:528:DC%2BC3MXnsl2ksr0%3D, PID: 21365126; Moj, D., Britz, H., Burhenne, J., Stewart, C.F., Egerer, G., Haefeli, W.E., A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification (2017) Cancer Chemother Pharmacol, 80, pp. 1013-1026. , COI: 1:CAS:528:DC%2BC2sXhs1alsrzP, PID: 28988277; Ribrag, V., Kim, W.S., Bouabdallah, R., Lim, S.T., Coiffier, B., Illes, A., Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study (2017) Haematologica, 102, pp. 903-909. , COI: 1:CAS:528:DC%2BC1cXitVWlurnP, PID: 28126962; Shimizu, T., LoRusso, P.M., Papadopoulos, K.P., Patnaik, A., Beeram, M., Smith, L.S., Phase I first-in-human study of CUDC-101, a multitargeted inhibitor of HDACs, EGFR, and HER2 in patients with advanced solid tumors (2014) Clin Cancer Res, 20, pp. 5032-5040. , COI: 1:CAS:528:DC%2BC2cXhs12gtbzP, PID: 25107918; de Bono, J.S., Kristeleit, R., Tolcher, A., Fong, P., Pacey, S., Karavasilis, V., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors (2008) Clin Cancer Res, 14, pp. 6663-6673. , PID: 18927309, COI: 1:CAS:528:DC%2BD1cXht1KgurzN; Boumber, Y., Younes, A., Garcia-Manero, G., Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor (2011) Expert Opin Investig Drugs, 20, pp. 823-829. , COI: 1:CAS:528:DC%2BC3MXlvVSkurs%3D, PID: 21554162; Oki, Y., Kelly, K.R., Flinn, I., Patel, M.R., Gharavi, R., Ma, A., CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial (2017) Haematologica, 102, pp. 1923-1930. , COI: 1:CAS:528:DC%2BC1cXitV2jsrvF, PID: 28860342; Ikeda, M., Ohno, I., Ueno, H., Mitsunaga, S., Hashimoto, Y., Okusaka, T., Phase I study of resminostat, an HDAC inhibitor, combined with S-1 in patients with pre-treated biliary tract or pancreatic cancer (2019) Invest New Drugs, 37, pp. 109-117. , COI: 1:CAS:528:DC%2BC1cXhtlWnsb3J, PID: 29995287; Undevia, S.D., Kindler, H.L., Janisch, L., Olson, S.C., Schilsky, R.L., Vogelzang, N.J., A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine (2004) Ann Oncol, 15, pp. 1705-1711. , COI: 1:STN:280:DC%2BD2crkslSrsw%3D%3D, PID: 15520075; Soragni, E., Miao, W., Iudicello, M., Jacoby, D., De Mercanti, S., Clerico, M., Epigenetic therapy for Friedreich ataxia: epigenetic therapy for FRDA (2014) Ann Neurol, 76, pp. 489-508. , COI: 1:CAS:528:DC%2BC2cXhslemtL%2FL, PID: 25159818; Tresckow, B., Sayehli, C., Aulitzky, W.E., Goebeler, M., Schwab, M., Braz, E., Phase I study of domatinostat (4 SC-202), a class I histone deacetylase inhibitor in patients with advanced hematological malignancies (2019) Eur J Haematol, 102, pp. 163-173. , COI: 1:CAS:528:DC%2BC1MXotVWktw%3D%3D; Cosenza, M., Pozzi, S., The therapeutic strategy of HDAC6 inhibitors in lymphoproliferative disease (2018) Int J Mol Sci, 19, p. 2337. , COI: 1:CAS:528:DC%2BC1MXnsVGhtrY%3D, PID: 6121661
PY - 2020
Y1 - 2020
N2 - Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions: These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism. © 2020, The Author(s).
AB - Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions: These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism. © 2020, The Author(s).
KW - 7q11.23 duplication syndrome
KW - Autism spectrum disorder
KW - GTF2I
KW - HDAC inhibitors
KW - High-throughput screening
KW - Induced pluripotent stem cells
KW - Intellectual disability
KW - Neurons
U2 - 10.1186/s13229-020-00387-6
DO - 10.1186/s13229-020-00387-6
M3 - Article
SN - 2040-2392
VL - 11
JO - Mol. Autism
JF - Mol. Autism
IS - 1
ER -