High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs

Sylvia Merkert, Madline Schubert, Ruth Olmer, Lena Engels, Silke Radetzki, Mieke Veltman, Bob J Scholte, Janina Zöllner, Nicoletta Pedemonte, Luis J V Galietta, Jens P von Kries, Ulrich Martin

Research output: Contribution to journalArticlepeer-review

Abstract

Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.

Original languageEnglish
Pages (from-to)1389-1403
Number of pages15
JournalStem Cell Reports
Volume12
Issue number6
DOIs
Publication statusPublished - Jun 11 2019

Fingerprint

Dive into the research topics of 'High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs'. Together they form a unique fingerprint.

Cite this