TY - JOUR
T1 - High-phosphate induced vascular calcification is reduced by iron citrate through inhibition of extracellular matrix osteo-chondrogenic shift in VSMCs
AU - Ciceri, Paola
AU - Falleni, Monica
AU - Tosi, Delfina
AU - Martinelli, Carla
AU - Bulfamante, Gaetano
AU - Block, Geoofrey A.
AU - Messa, Piergiorgio
AU - Cozzolino, Mario
PY - 2019/12/15
Y1 - 2019/12/15
N2 - Background: High serum phosphate (Pi) levels strongly associate with cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients with vascular calcification playing a major role in the pathogenesis of related cardiovascular disease. High-Pi challenged vascular smooth muscle cells (VSMCs) undergo simil-osteoblastic transformation and actively deposit calcium-phosphate crystals. Iron-based Pi-binders are used to treat hyperphosphatemia in CKD patients. Methods: In this study, we investigated the direct effect of iron citrate on extracellular matrix (ECM) modification induced by high-Pi, following either prophylactic or therapeutic approach. Results: Iron prophylactically prevents and therapeutically blocks high-Pi induced calcification. Masson's staining highlights the changes of muscular ECM that after high-Pi stimulation becomes fibrotic and which modifications are prevented or partially reverted by iron. Interestingly, iron preserves glycogen granules and either prevents or partially reverts the formation of non-glycogen granules induced by high-Pi. In parallel, iron addition is able to either prevent or block the high-Pi induced acid mucin deposition. Iron inhibited calcification also by preventing exosome osteo-chondrogenic shift by reducing phosphate load (0,61 ± 0.04vs0,45 ± 0.05, PivsPi + Fe, p < 0,05, nmol Pi/mg protein) and inducing miRNA 30c (0.62 ± 0.05vs3.07 ± 0.62; PivsPi + Fe, p < 0.01, relative expression). Studying aortic rings, we found that iron significantly either prevents or reverts the high-Pi induced collagen deposition and the elastin decrease, preserving elastin structure (0.7 ± 0.1 vs 1.2 ± 0.1; Pi vs Pi + Fe, p < 0.05, elastin mRNA relative expression). Conclusions: Iron directly either prevents or partially reverts the high-Pi induced osteo-chondrocytic shift of ECM. The protection of muscular nature of VSMC ECM may be one of the mechanisms elucidating the anti-calcific effect of iron.
AB - Background: High serum phosphate (Pi) levels strongly associate with cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients with vascular calcification playing a major role in the pathogenesis of related cardiovascular disease. High-Pi challenged vascular smooth muscle cells (VSMCs) undergo simil-osteoblastic transformation and actively deposit calcium-phosphate crystals. Iron-based Pi-binders are used to treat hyperphosphatemia in CKD patients. Methods: In this study, we investigated the direct effect of iron citrate on extracellular matrix (ECM) modification induced by high-Pi, following either prophylactic or therapeutic approach. Results: Iron prophylactically prevents and therapeutically blocks high-Pi induced calcification. Masson's staining highlights the changes of muscular ECM that after high-Pi stimulation becomes fibrotic and which modifications are prevented or partially reverted by iron. Interestingly, iron preserves glycogen granules and either prevents or partially reverts the formation of non-glycogen granules induced by high-Pi. In parallel, iron addition is able to either prevent or block the high-Pi induced acid mucin deposition. Iron inhibited calcification also by preventing exosome osteo-chondrogenic shift by reducing phosphate load (0,61 ± 0.04vs0,45 ± 0.05, PivsPi + Fe, p < 0,05, nmol Pi/mg protein) and inducing miRNA 30c (0.62 ± 0.05vs3.07 ± 0.62; PivsPi + Fe, p < 0.01, relative expression). Studying aortic rings, we found that iron significantly either prevents or reverts the high-Pi induced collagen deposition and the elastin decrease, preserving elastin structure (0.7 ± 0.1 vs 1.2 ± 0.1; Pi vs Pi + Fe, p < 0.05, elastin mRNA relative expression). Conclusions: Iron directly either prevents or partially reverts the high-Pi induced osteo-chondrocytic shift of ECM. The protection of muscular nature of VSMC ECM may be one of the mechanisms elucidating the anti-calcific effect of iron.
KW - Extracellular matrix
KW - Iron
KW - Phosphate
KW - Vascular calcification
KW - VSMC
UR - http://www.scopus.com/inward/record.url?scp=85073164948&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073164948&partnerID=8YFLogxK
U2 - 10.1016/j.ijcard.2019.09.068
DO - 10.1016/j.ijcard.2019.09.068
M3 - Article
C2 - 31619363
AN - SCOPUS:85073164948
SN - 0167-5273
VL - 297
SP - 94
EP - 103
JO - International Journal of Cardiology
JF - International Journal of Cardiology
ER -