TY - JOUR
T1 - H ferritin knockout mice
T2 - A model of hyperferritinemia in the absence of iron overload
AU - Ferreira, Chrystophe
AU - Santambrogio, Paolo
AU - Martin, Marie Elise
AU - Andrieu, Valérie
AU - Feldmann, Gérard
AU - Hénin, Dominique
AU - Beaumont, Carole
PY - 2001/8/1
Y1 - 2001/8/1
N2 - Ferritin, the iron-storing molecule, is made by the assembly of various proportions of 2 different H and L subunits into a 24-mer protein shell. These heteropolymers have distinct physicochemical properties, owing to the ferroxidase activity of the H subunit, which is necessary for iron up-take by the ferritin molecule, and the ability of the L subunit to facilitate iron core formation inside the protein shell. It has previously been shown that H ferritin is indispensable for normal development, since inactivation of the H ferritin gene by homologous recombination in mice is lethal at an early stage during embryonic development. Here the phenotypic analysis of the mice heterozygous for the H ferritin gene (Fth+/- mice) is reported, and differences in gene regulation between the 2 subunits are shown. The heterozygous Fth+/- mice were healthy and fertile and did not present any apparent abnormalities. Although they had iron-overloaded spleens at the adult stage, this is identical to what is observed in normal Fth+/+ mice. However, these heterozygous mice had slightly elevated tissue L ferritin content and 7- to 10-fold more L ferritin in the serum than normal mice, but their serum iron remained unchanged. H ferritin synthesis from the remaining allele was not up-regulated. This probably results from subtle changes in the intracellular labile iron pool, which would stimulate L ferritin but not H ferritin synthesis. These results raise the possibility that reduced H ferritin expression might be responsible for unexplained human cases of hyperferritinemia in the absence of iron overload where the hereditary hyperferritinemia-cataract syndrome has been excluded.
AB - Ferritin, the iron-storing molecule, is made by the assembly of various proportions of 2 different H and L subunits into a 24-mer protein shell. These heteropolymers have distinct physicochemical properties, owing to the ferroxidase activity of the H subunit, which is necessary for iron up-take by the ferritin molecule, and the ability of the L subunit to facilitate iron core formation inside the protein shell. It has previously been shown that H ferritin is indispensable for normal development, since inactivation of the H ferritin gene by homologous recombination in mice is lethal at an early stage during embryonic development. Here the phenotypic analysis of the mice heterozygous for the H ferritin gene (Fth+/- mice) is reported, and differences in gene regulation between the 2 subunits are shown. The heterozygous Fth+/- mice were healthy and fertile and did not present any apparent abnormalities. Although they had iron-overloaded spleens at the adult stage, this is identical to what is observed in normal Fth+/+ mice. However, these heterozygous mice had slightly elevated tissue L ferritin content and 7- to 10-fold more L ferritin in the serum than normal mice, but their serum iron remained unchanged. H ferritin synthesis from the remaining allele was not up-regulated. This probably results from subtle changes in the intracellular labile iron pool, which would stimulate L ferritin but not H ferritin synthesis. These results raise the possibility that reduced H ferritin expression might be responsible for unexplained human cases of hyperferritinemia in the absence of iron overload where the hereditary hyperferritinemia-cataract syndrome has been excluded.
UR - http://www.scopus.com/inward/record.url?scp=0035437188&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035437188&partnerID=8YFLogxK
U2 - 10.1182/blood.V98.3.525
DO - 10.1182/blood.V98.3.525
M3 - Article
C2 - 11468145
AN - SCOPUS:0035437188
SN - 0006-4971
VL - 98
SP - 525
EP - 532
JO - Blood
JF - Blood
IS - 3
ER -