TY - JOUR
T1 - Extra-visual functional and structural connection abnormalities in Leber's hereditary optic neuropathy
AU - Rocca, Maria A.
AU - Valsasina, Paola
AU - Pagani, Elisabetta
AU - Bianchi-Marzoli, Stefania
AU - Milesi, Jacopo
AU - Falini, Andrea
AU - Comi, Giancarlo
AU - Filippi, Massimo
PY - 2011
Y1 - 2011
N2 - We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber's hereditary optic neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits.
AB - We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber's hereditary optic neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits.
UR - http://www.scopus.com/inward/record.url?scp=79951824870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79951824870&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0017081
DO - 10.1371/journal.pone.0017081
M3 - Article
C2 - 21347331
AN - SCOPUS:79951824870
SN - 1932-6203
VL - 6
JO - PLoS One
JF - PLoS One
IS - 2
M1 - e17081
ER -