Abstract
Original language | English |
---|---|
Pages (from-to) | 77-100 |
Number of pages | 24 |
Journal | Matrix Biology |
Volume | 74 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Duchenne muscle dystrophy
- Exosomes
- Fibroblasts
- Fibrosis
- miRNAs
- Myofibroblasts
- alpha smooth muscle actin
- cardiotoxin
- caveolin 1
- ceramide
- collagen
- fibronectin
- microRNA
- microRNA 199a 5p
- mitogen activated protein kinase
- protein kinase B
- unclassified drug
- adult
- Akt signaling
- animal experiment
- animal model
- animal tissue
- Article
- cell proliferation
- cell transdifferentiation
- cell transfer
- cellular distribution
- controlled study
- Duchenne muscular dystrophy
- electric potential
- enzyme activation
- exosome
- fibroblast
- genetic transfection
- human
- human cell
- MAPK signaling
- microarray analysis
- mouse
- mRNA expression level
- muscle biopsy
- myoblast
- myofibroblast
- nonhuman
- organelle biogenesis
- pathogenesis
- phenotype
- priority journal
- protein expression
- skeletal muscle
- tibialis anterior muscle
- transcription regulation
- upregulation
Fingerprint
Dive into the research topics of 'Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis. / Zanotti, S.; Gibertini, S.; Blasevich, F. et al.
In: Matrix Biology, Vol. 74, 2018, p. 77-100.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis
AU - Zanotti, S.
AU - Gibertini, S.
AU - Blasevich, F.
AU - Bragato, C.
AU - Ruggieri, A.
AU - Saredi, S.
AU - Fabbri, M.
AU - Bernasconi, P.
AU - Maggi, L.
AU - Mantegazza, R.
AU - Mora, M.
N1 - Cited By :1 Export Date: 5 February 2019 CODEN: MTBOE Correspondence Address: Mora, M.; Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Italy; email: marina.mora@istituto-besta.it Chemicals/CAS: collagen, 9007-34-5; fibronectin, 86088-83-7; mitogen activated protein kinase, 142243-02-5; protein kinase B, 148640-14-6 Funding details: University of Southampton Funding details: GTB12001F Funding details: Associazione Italiana per la Ricerca sul Cancro, AIRC, 10007 Funding text 1: We thank Dr. Antonello Maruotti of the Dipartimento di Giurisprudenza, Economia, Politica e Lingue Moderne, LUMSA Università, Roma and Centre for Innovation and Leadership in Health Sciences, University of Southampton, Southampton, UK, for help with statistics. We thank the EuroBioBank and Telethon Network of Genetic Biobanks (GTB12001F to MM) for providing biological samples. This work was supported by grants for current research from the Italian Ministry of Health , years 2015–2017. M.F. is supported by funds from AIRC 5 × 1000 n. 10007 . References: Smith, L.R., Barton, E.R., Regulation of fibrosis in muscular dystrophy (2018) Matrix Biol., 68-69, pp. 602-615. , (Review); Tidball, J.G., Mechanisms of muscle injury, repair, and regeneration (2011) Compr. Physiol., 1, pp. 2029-2062; Schaefer, L., Decoding fibrosis: mechanisms and translational aspects (2018) Matrix Biol., 68-69, pp. 1-7; Martinez, F.J., Collard, H.R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J.J., Wells, A.U., Idiopathic pulmonary fibrosis (2017) Nat. Rev. Dis. Prim, 3; Schuppan, D., Ashfaq-Khan, M., Yang, A.T., Kim, Y.O., Liver fibrosis: direct antifibrotic agents and targeted therapies (2018) Matrix Biol., 68-69, pp. 435-451; Gewin, L.S., Renal fibrosis: primacy of the proximal tubule (2018) Matrix Biol., 68-69, pp. 248-262; Li, L., Zhao, Q., Kong, W., Extracellular matrix remodeling and cardiac fibrosis (2018) Matrix Biol., 68-69, pp. 490-506; Schulz, J.-N., Plomann, M., Sengle, G., Gullberg, D., Krieg, T., Eckes, B., New developments on skin fibrosis - essential signals emanating from the extracellular matrix for the control of myofibroblasts (2018) Matrix Biol., 68-69, pp. 522-532; Oliveira Dias, D., Göritz, C., Fibrotic scarring following lesions to the central nervous system (2018) Matrix Biol., 68-69, pp. 561-570; Wynn, T.A., Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases (2007) J. Clin. Invest., 117, pp. 524-529; Kramann, R., Di Rocco, D.P., Humphreys, B.D., Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease (2013) J. Pathol., 231, pp. 273-289; Piersma, B., R.A. Bank, Boersema, M., Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge (2015) Front. Med. (Lausanne), 2, p. 59; Thannickal, V.J., Lee, D.Y., White, E.S., Cui, Z., Larios, J.M., Chacon, R., Horowitz, J.C., Thomas, P.E., Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase (2003) J. Biol. Chem., 278, pp. 12384-12389; Pakshir, P., Hinz, B., The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication (2018) Matrix Biol., 68-69, pp. 81-93; Kalluri, R., Weinberg, R.A., The basics of epithelial–mesenchymal transition (2009) J. Clin. Invest., 119, pp. 1420-1428; Hinz, B., Phan, S.H., Thannickal, V.J., Prunotto, M., Desmoulière, A., Varga, J., De Wever, O., Gabbiani, G., Recent developments in myofibroblast biology: paradigms for connective tissue remodelling (2012) Am. J. Pathol., 180, pp. 1340-1355; Zanotti, S., Gibertini, S., Mora, M., Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-beta 1 treatment (2010) Cell Tissue Res., 339, pp. 397-410; Zanotti, S., Gibertini, S., Bragato, C., Mantegazza, R., Morandi, L., Mora, M., Fibroblasts from the muscles of Duchenne muscular dystrophy patients are resistant to cell detachment apoptosis (2011) Exp. Cell Res., 317, pp. 2536-2547; Zanotti, S., Saredi, S., Ruggieri, A., Fabbri, M., Blasevich, F., Romaggi, S., Morandi, L., Mora, M., Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes (2007) Matrix Biol., 26, pp. 615-624; Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Thum, T., Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy (2014) J. Clin. Invest., 124, pp. 2136-2146; Fujita, Y., Yoshioka, Y., Ito, S., Araya, J., Kuwano, K., Ochiya, T., Intercellular communication by extracellular vesicles and their microRNAs in asthma (2014) Clin. Ther., 36, pp. 873-881; Kohlhapp, F.J., Mitra, A.K., Lengyel, E., Peter, M.E., MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment (2015) Oncogene, 34, pp. 5857-5868; Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells (2007) Nat. Cell Biol., 9, pp. 654-659; Zomer, A., Vendrig, T., Hopmans, E.S., van Eijndhoven, M., Middeldorp, J.M., Pegtel, D.M., Exosomes: fit to deliver small RNA (2010) Commun. Integr. Biol., 3, pp. 447-450; Bowen, T., Jenkins, R.H., Fraser, D.J., MicroRNAs, transforming growth factor beta-1, and tissue fibrosis (2013) J. Pathol., 229, pp. 274-285; Cui, H., Banerjee, S., Xie, N., Ge, J., Liu, R.M., Matalon, S., Thannickal, V.J., Liu, G., MicroRNA-27a-3p is a negative regulator of lung fibrosis by targeting myofibroblast differentiation (2016) Am. J. Respir. Cell Mol. Biol., 54, pp. 843-852; Nagpal, V., Rai, R., Place, A.T., Murphy, S.B., Verma, S.K., Ghosh, A.K., Vaughan, D.E., MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis (2016) Circulation, 133, pp. 291-301; Bijkerk, R., de Bruin, R.G., van Solingen, C., van Gils, J.M., Duijs, J.M., van der Veer, E.P., Rabelink, T.J., van Zonneveld, A.J., Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation (2016) Kidney Int., 89, pp. 1268-1280; Lino Cardenas, C.L., Henaoui, I.S., Courcot, E., Roderburg, C., Cauffiez, C., Aubert, S., Copin, M.C., Pottier, N., miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1 (2013) PLoS Genet., 9; Murakami, Y., Toyoda, H., Tanaka, M., Kuroda, M., Harada, Y., Matsuda, F., Tajima, A., Shimotohno, K., The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families (2011) PLoS One, 6; Miguel, V., Busnadiego, O., Fierro-Fernández, M., Lamas, S., Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts (2016) Fibrogenesis Tissue Repair, 9, p. 7; Zanotti, S., Gibertini, S., Curcio, M., Savadori, P., Pasanisi, B., Morandi, L., Cornelio, F., Mora, M., Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy (2015) Biochim. Biophys. Acta, 1852, pp. 1451-1464; Mathivanan, S., Ji, H., Simpson, R.J., Exosomes: extracellular organelles important in intercellular communication (2010) J. Proteome, 73, pp. 1907-1920; Schwarz, R.I., Collagen I and the fibroblast: high protein expression requires a new paradigm of post-transcriptional, feedback regulation (2015) Biochem. Biophys. Rep., 3, pp. 38-44; To, W.S., Midwood, K.S., Plasma and cellular fibronectin: distinct and independent functions during tissue repair (2011) Fibrogenesis Tissue Repair, 4, p. 21; Wang, R., Ding, Q., Yaqoob, U., de Assuncao, T.M., Verma, V.K., Hirsova, P., Cao, S., Shah, V., Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration (2015) J. Biol. Chem., 290, pp. 30684-30696; Atay, S., Gercel-Taylor, C., Taylor, D.D., Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages (2011) Am. J. Reprod. Immunol., 66, pp. 259-269; Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Simons, M., Ceramide triggers budding of exosome vesicles into multivesicular endosomes (2008) Science, 319, pp. 1244-1247; Kosaka, N., Iguchi, H., Hagiwara, K., Yoshioka, Y., Takeshita, F., Ochiya, T., Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis (2013) J. Biol. Chem., 288, pp. 10849-10859; Lange, T., Stracke, S., Rettig, R., Lendeckel, U., Kuhn, J., Schlüter, R., Rippe, V., Endlich, N., Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients (2017) PLoS One, 12; Wang, X.M., Zhang, Y., Kim, H.P., Zhou, Z., Feghali-Bostwick, C.A., Liu, F., Ifedigbo, E., Choi, A.M., Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis (2006) J. Exp. Med., 203, pp. 2895-2906; Aranda, J.F., Canfrán-Duque, A., Goedeke, L., Suárez, Y., Fernández-Hernando, C., The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis (2015) J. Cell Sci., 128, pp. 3197-3209; Peterson, M.F., Otoc, N., Sethi, J.K., Gupta, A., Antes, T.J., Integrated systems for exosome investigation (2015) Methods, 87, pp. 31-45; Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., Xu, W., Exosomes in cancer: small particle, big player (2015) J. Hematol. Oncol., 8, pp. 83-96; Subramanian, A., Gupta, V., Sarkar, S., Maity, G., Banerjee, S., Ghosh, A., Harris, L., Banerjee, S.K., Exosomes in carcinogenesis: molecular palkis carry signals for the regulation of cancer progression and metastasis (2016) J. Cell Commun. Signal., 10, pp. 241-249; Robbins, P.D., Morelli, A.E., Regulation of immune responses by extracellular vesicles (2014) Nat. Rev. Immunol., 14, pp. 195-208; Frühbeis, C., Fröhlich, D., Kuo, W.P., Krämer-Albers, E.M., Extracellular vesicles as mediators of neuron-glia communication (2013) Front. Cell. Neurosci., 7, p. 182; Ogorevc, E., Kralj-Iglic, V., Veranic, P., The role of extracellular vesicles in phenotypic cancer transformation (2013) Radiol. Oncol., 47, pp. 197-205; Lopatina, T., Gai, C., Deregibus, M.C., Kholia, S., Camussi, G., Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids (2016) Front. Oncol., 6, p. 125; Mulcahy, L.A., Pink, R.C., Carter, D.R., Routes and mechanisms of extracellular vesicle uptake (2014) J. Extracell. Vesicles, Aug 4, p. 3; Chen, L., Chen, R., Kemper, S., Brigstock, D.R., Pathways of production and delivery of hepatocyte exosomes (2017) J. Cell Commun. Signal., Oct 23; Le Saux, C.J., Teeters, K., Miyasato, S.K., Hoffmann, P.R., Bollt, O., Douet, V., Shohet, R.V., Tam, E.K., Down-regulation of caveolin-1, an inhibitor of transforming growth factor-beta signaling, in acute allergen-induced airway remodelling (2008) J. Biol. Chem., 283, pp. 5760-5768; Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F., Wrana, J.L., Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover (2003) Nat. Cell Biol., 5, pp. 410-421; Grande-Garcia, A., del Pozo, M.A., Caveolin-1 in cell polarization and directional migration (2008) Eur. J. Cell Biol., 87, pp. 641-647; Parat, M.O., The biology of caveolae: achievements and perspectives (2009) Int. Rev. Cell Mol. Biol., 273, pp. 117-162; Cho, K.A., Ryu, S.J., Oh, Y.S., Park, J.H., Lee, J.W., Kim, H.P., Kim, K.T., Park, S.C., Morphological adjustment of senescent cells by modulating caveolin-1 status (2004) J. Biol. Chem., 279, pp. 42270-42278; Yi, S.L., Liu, X.J., Zhong, J.Q., Zhang, Y., Role of caveolin-1 in atrial fibrillation as an anti-fibrotic signaling molecule in human atrial fibroblasts (2014) PLoS One, 9; Del Galdo, F., Lisanti, M.P., Jimenez, S.A., Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis (2008) Curr. Opin. Rheumatol., 20, pp. 713-719; Odajima, N., Betsuyaku, T., Nasuhara, Y., Nishimura, M., Loss of caveolin-1 in bronchiolization in lung fibrosis (2007) J. Histochem. Cytochem., 55, pp. 899-909; Xia, H., Khalil, W., Kahm, J., Jessurun, J., Kleidon, J., Henke, C.A., Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis (2010) Am. J. Pathol., 176, pp. 2626-2637; Rockey, D.C., Bell, P.D., Hill, J.A., Fibrosis—a common pathway to organ injury and failure (2015) N. Engl. J. Med., 372 (12), pp. 1138-1149; Mora, M., Bragato, C., Gibertini, S., Zanotti, S., Curcio, M., Canioni, E., Salerno, F., Andreetta, F., Biobank of cells, tissues and DNA from patients with neuromuscular diseases: an indispensable link between clinical centers and the scientific community (2017) Open J. Bioresources, 4; Vlachos, I.S., Zagganas, K., Paraskevopoulou, M.D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T., Hatzigeorgiou, A.G., DIANA-miRPath v3.0: deciphering microRNA function with experimental support (2015) Nucleic Acids Res., 43, pp. W460-W466; Gibertini, S., Zanotti, S., Savadori, P., Curcio, M., Saredi, S., Salerno, F., Andreetta, F., Mora, M., Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse (2014) Cell Tissue Res., 356, pp. 427-443
PY - 2018
Y1 - 2018
N2 - Exosomes, natural carriers of mRNAs, non-coding RNAs and proteins between donor and recipient cells, actively contribute to cell-cell communication. We investigated the potential pro-fibrotic role of exosomes released by muscle-derived fibroblasts of Duchenne muscular dystrophy (DMD) patients, and of miRNAs carried by exosomes. By fibrosis focused array analysis we found that exosomes from DMD fibroblasts, had significantly higher levels of miR-199a-5p, a miRNA up-regulated in fibrotic conditions, compared to control exosomes, while levels in myoblast-derived exosomes were not increased. In control fibroblasts, exposure to DMD fibroblast-derived exosomes induced a myofibroblastic phenotype with increase in α-smooth actin, collagen and fibronectin transcript and protein expression, soluble collagen production and deposition, cell proliferation, and activation of Akt and ERK signaling, while exposure to control exosomes did not. Transfecting control fibroblasts or loading control exosomes with miR-199a-5p mimic or inhibitor induced opposing effects on fibrosis-related mRNAs and proteins, on collagen production and Akt and ERK pathways. Finally, injection of DMD fibroblast-derived exosomes into mouse tibialis anterior muscle after cardiotoxin-induced necrosis, produced greater fibrosis than control exosomes. Our findings indicate that exosomes produced by local fibroblasts in the DMD muscle are able to induce phenotypic conversion of normal fibroblasts to myofibroblasts thereby increasing the fibrotic response. This conversion is related to transfer of high levels of miR-199a-5p and to reduction of its target caveolin-1; both, therefore, are potential therapeutic targets in muscle fibrosis. © 2018 International Society of Matrix Biology
AB - Exosomes, natural carriers of mRNAs, non-coding RNAs and proteins between donor and recipient cells, actively contribute to cell-cell communication. We investigated the potential pro-fibrotic role of exosomes released by muscle-derived fibroblasts of Duchenne muscular dystrophy (DMD) patients, and of miRNAs carried by exosomes. By fibrosis focused array analysis we found that exosomes from DMD fibroblasts, had significantly higher levels of miR-199a-5p, a miRNA up-regulated in fibrotic conditions, compared to control exosomes, while levels in myoblast-derived exosomes were not increased. In control fibroblasts, exposure to DMD fibroblast-derived exosomes induced a myofibroblastic phenotype with increase in α-smooth actin, collagen and fibronectin transcript and protein expression, soluble collagen production and deposition, cell proliferation, and activation of Akt and ERK signaling, while exposure to control exosomes did not. Transfecting control fibroblasts or loading control exosomes with miR-199a-5p mimic or inhibitor induced opposing effects on fibrosis-related mRNAs and proteins, on collagen production and Akt and ERK pathways. Finally, injection of DMD fibroblast-derived exosomes into mouse tibialis anterior muscle after cardiotoxin-induced necrosis, produced greater fibrosis than control exosomes. Our findings indicate that exosomes produced by local fibroblasts in the DMD muscle are able to induce phenotypic conversion of normal fibroblasts to myofibroblasts thereby increasing the fibrotic response. This conversion is related to transfer of high levels of miR-199a-5p and to reduction of its target caveolin-1; both, therefore, are potential therapeutic targets in muscle fibrosis. © 2018 International Society of Matrix Biology
KW - Duchenne muscle dystrophy
KW - Exosomes
KW - Fibroblasts
KW - Fibrosis
KW - miRNAs
KW - Myofibroblasts
KW - alpha smooth muscle actin
KW - cardiotoxin
KW - caveolin 1
KW - ceramide
KW - collagen
KW - fibronectin
KW - microRNA
KW - microRNA 199a 5p
KW - mitogen activated protein kinase
KW - protein kinase B
KW - unclassified drug
KW - adult
KW - Akt signaling
KW - animal experiment
KW - animal model
KW - animal tissue
KW - Article
KW - cell proliferation
KW - cell transdifferentiation
KW - cell transfer
KW - cellular distribution
KW - controlled study
KW - Duchenne muscular dystrophy
KW - electric potential
KW - enzyme activation
KW - exosome
KW - fibroblast
KW - genetic transfection
KW - human
KW - human cell
KW - MAPK signaling
KW - microarray analysis
KW - mouse
KW - mRNA expression level
KW - muscle biopsy
KW - myoblast
KW - myofibroblast
KW - nonhuman
KW - organelle biogenesis
KW - pathogenesis
KW - phenotype
KW - priority journal
KW - protein expression
KW - skeletal muscle
KW - tibialis anterior muscle
KW - transcription regulation
KW - upregulation
U2 - 10.1016/j.matbio.2018.07.003
DO - 10.1016/j.matbio.2018.07.003
M3 - Article
SN - 0945-053X
VL - 74
SP - 77
EP - 100
JO - Matrix Biology
JF - Matrix Biology
ER -