TY - JOUR
T1 - Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure
T2 - A focus on cell-free DNA and microRNAs
AU - Mansueto, Gelsomina
AU - Benincasa, Giuditta
AU - Della Mura, Nunzia
AU - Nicoletti, Giovanni Francesco
AU - Napoli, Claudio
N1 - Funding Information:
Funding This work was supported by PRIN2017F8ZB89 from Italian Ministry of University and Research (MIUR) (PI Professor Napoli). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Dr Giuditta Benincasa is a PhD student of Translational Medicine awarded with Educational Grant from ESC Congress 2019 and supported by Educational Grant from the University of Campania, Naples, Italy.
Publisher Copyright:
© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Dilated cardiomyopathy (DCM) represents a common genetic cause of mechanical and/or electrical dysfunction leading to heart failure (HF) onset for which truncating variants in titin (TTN) gene result in the most frequent mutations. Moreover, myocyte and endothelial cell apoptosis is a key endophenotype underlying cardiac remodelling. Therefore, a deeper knowledge about molecular networks leading to acute injury and apoptosis may reveal novel circulating biomarkers useful to better discriminate HF phenotypes, patients at risk of heart transplant as well as graft reject in order to improve personalised therapy. Remarkably, increased plasma levels of cell-free DNA (cfDNA) may reflect the extent of cellular damage, whereas circulating mitochondrial DNA (mtDNA) may be a promising biomarker of poor prognosis in patients with HF. Furthermore, some panels of circulating miRNAs may improve the stratification of natural history of disease. For example, a combination of miR-558, miR-122∗ and miR-520d-5p, as well as miR-125a-5p, miR-550a-5p, miR-638 and miR-190a, may aid to discriminate different phenotypes of HF ranging from preserved to reduced ejection fraction. We give update on the most relevant genetic determinants involved in DCM and discuss the putative role of non-invasive biomarkers to overcome current limitations of the reductionist approach in HF management.
AB - Dilated cardiomyopathy (DCM) represents a common genetic cause of mechanical and/or electrical dysfunction leading to heart failure (HF) onset for which truncating variants in titin (TTN) gene result in the most frequent mutations. Moreover, myocyte and endothelial cell apoptosis is a key endophenotype underlying cardiac remodelling. Therefore, a deeper knowledge about molecular networks leading to acute injury and apoptosis may reveal novel circulating biomarkers useful to better discriminate HF phenotypes, patients at risk of heart transplant as well as graft reject in order to improve personalised therapy. Remarkably, increased plasma levels of cell-free DNA (cfDNA) may reflect the extent of cellular damage, whereas circulating mitochondrial DNA (mtDNA) may be a promising biomarker of poor prognosis in patients with HF. Furthermore, some panels of circulating miRNAs may improve the stratification of natural history of disease. For example, a combination of miR-558, miR-122∗ and miR-520d-5p, as well as miR-125a-5p, miR-550a-5p, miR-638 and miR-190a, may aid to discriminate different phenotypes of HF ranging from preserved to reduced ejection fraction. We give update on the most relevant genetic determinants involved in DCM and discuss the putative role of non-invasive biomarkers to overcome current limitations of the reductionist approach in HF management.
KW - apoptosis
KW - cardiovascular
KW - diagnostics
UR - http://www.scopus.com/inward/record.url?scp=85087928633&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087928633&partnerID=8YFLogxK
U2 - 10.1136/jclinpath-2019-206404
DO - 10.1136/jclinpath-2019-206404
M3 - Review article
C2 - 32616540
AN - SCOPUS:85087928633
SN - 0021-9746
VL - 73
SP - 535
EP - 543
JO - Journal of Clinical Pathology - Clinical Molecular Pathology
JF - Journal of Clinical Pathology - Clinical Molecular Pathology
IS - 9
ER -