TY - JOUR
T1 - Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons
AU - Spisni, Enzo
AU - Valerii, Maria Chiara
AU - Manerba, Marcella
AU - Strillacci, Antonio
AU - Polazzi, Elisabetta
AU - Mattia, Toni
AU - Griffoni, Cristiana
AU - Tomasi, Vittorio
PY - 2009/7
Y1 - 2009/7
N2 - Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1α, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.
AB - Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1α, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.
KW - Copper
KW - Cyclophilin A
KW - Inflammation
KW - Neutrophil gelatinase-associated lipocalin (NGAL)
KW - Secreted protein acidic and rich in cysteine (SPARC)
UR - http://www.scopus.com/inward/record.url?scp=67650812503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650812503&partnerID=8YFLogxK
U2 - 10.1016/j.neuro.2009.03.005
DO - 10.1016/j.neuro.2009.03.005
M3 - Article
C2 - 19635393
AN - SCOPUS:67650812503
SN - 0161-813X
VL - 30
SP - 605
EP - 612
JO - NeuroToxicology
JF - NeuroToxicology
IS - 4
ER -