TY - JOUR
T1 - Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome
T2 - a prospective observational study
AU - Collaborators
AU - Robba, Chiara
AU - Ball, Lorenzo
AU - Battaglini, Denise
AU - Cardim, Danilo
AU - Moncalvo, Emanuela
AU - Brunetti, Iole
AU - Bassetti, Matteo
AU - Giacobbe, Daniele R.
AU - Vena, Antonio
AU - Patroniti, Nicolò
AU - Rocco, Patricia R.M.
AU - Matta, Basil F.
AU - Pelosi, Paolo
AU - Anania, Pasquale
AU - Berri, Chiara
AU - Ciaravolo, Elena
AU - Dentone, Chiara
AU - Fiaschi, Pietro
AU - Frisoni, Paolo
AU - Gratarola, Angelo
AU - Magnasco, Laura
AU - Marramao, Francesco
AU - Sottano, Marco
AU - Taramasso, Lucia
AU - Tarantino, Fabio
AU - Zona, Gianluigi
N1 - Funding Information:
The authors would like to acknowledge the following as Collaborators to be searchable on PubMed: Elena Ciaravolo, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Italy; Fabio Tarantino, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Marco Sottano, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Francesco Marramao, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Angelo Gratarola, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Paolo Frisoni, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Chiara Berri, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy; Chiara Dentone, Infectious Diseases Unit, Ospedale Policlinico San Martino, Genoa, Italy; Lucia Taramasso, Infectious Diseases Unit, Ospedale Policlinico San Martino, Genoa, Italy; Laura Magnasco, Infectious Diseases Unit, Ospedale Policlinico San Martino, Genoa, Italy; Gianluigi Zona, Department of Neurosurgery, Ospedale Policlinico San Martino, Genoa, Italy; Pietro Fiaschi, Department of Neurosurgery, Ospedale Policlinico San Martino, Genoa, Italy; Pasquale Anania, Department of Neurosurgery, Ospedale Policlinico San Martino, Genoa, Italy.
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/12
Y1 - 2021/12
N2 - Background: In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. Methods: This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. Results: Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57–69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51–54]% vs. 49 [47–50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56–71] to 82 [76–87] mmHg, p = 0.005) and rSO2 (from 53 [52–54]% to 60 [59–64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67–73] to 72 [67–73] mmHg, p = 0.015) and rSO2 (from 53 [51–56]% to 57 [55–59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75–79] to 64 [60–70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56–65]% vs. 56 [53–62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). Conclusions: Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).
AB - Background: In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. Methods: This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. Results: Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57–69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51–54]% vs. 49 [47–50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56–71] to 82 [76–87] mmHg, p = 0.005) and rSO2 (from 53 [52–54]% to 60 [59–64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67–73] to 72 [67–73] mmHg, p = 0.015) and rSO2 (from 53 [51–56]% to 57 [55–59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75–79] to 64 [60–70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56–65]% vs. 56 [53–62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). Conclusions: Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).
KW - Carbon dioxide removal
KW - Cerebral oxygenation
KW - Coronavirus
KW - Prone position
KW - Recruitment maneuvers
KW - Rescue therapies
UR - http://www.scopus.com/inward/record.url?scp=85103229308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103229308&partnerID=8YFLogxK
U2 - 10.1186/s13054-021-03537-1
DO - 10.1186/s13054-021-03537-1
M3 - Article
C2 - 33741052
AN - SCOPUS:85103229308
SN - 1466-609X
VL - 25
JO - Critical Care
JF - Critical Care
IS - 1
M1 - 111
ER -