TY - JOUR
T1 - Early Cardiac involvement affects left ventricular longitudinal function in females carrying α- galactosidase a mutation role of hybrid positron emission tomography and magnetic resonance imaging and speckle-tracking echocardiography
AU - Spinelli, Letizia
AU - Imbriaco, Massimo
AU - Nappi, Carmela
AU - Nicolai, Emanuele
AU - Giugliano, Giuseppe
AU - Ponsiglione, Andrea
AU - Diomiaiuti, Tommaso Claudio
AU - Riccio, Eleonora
AU - Duro, Giovanni
AU - Pisani, Antonio
AU - Trimarco, Bruno
AU - Cuocolo, Alberto
PY - 2018/4/1
Y1 - 2018/4/1
N2 - BACKGROUND: Hybrid 18F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. METHODS AND RESULTS: Twenty-four heterozygous females carrying α-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18F-FDG uptake and 0.12±0.03 in those without (P<0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV ≤0.17 (-18.5±2.7% versus -22.2±1.8%; P=0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. CONCLUSIONS: In females carrying α-galactosidase A mutation, focal 18F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders.
AB - BACKGROUND: Hybrid 18F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. METHODS AND RESULTS: Twenty-four heterozygous females carrying α-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18F-FDG uptake and 0.12±0.03 in those without (P<0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV ≤0.17 (-18.5±2.7% versus -22.2±1.8%; P=0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. CONCLUSIONS: In females carrying α-galactosidase A mutation, focal 18F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders.
UR - http://www.scopus.com/inward/record.url?scp=85048138043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048138043&partnerID=8YFLogxK
U2 - 10.1161/CIRCIMAGING.117.007019
DO - 10.1161/CIRCIMAGING.117.007019
M3 - Article
AN - SCOPUS:85048138043
SN - 1941-9651
VL - 11
JO - Circulation: Cardiovascular Imaging
JF - Circulation: Cardiovascular Imaging
IS - 4
M1 - e007019
ER -