Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease

Andrea Guerra, Donato Colella, Margherita Giangrosso, Antonio Cannavacciuolo, Giulia Paparella, Giovanni Fabbrini, Antonio Suppa, Alfredo Berardelli, Matteo Bologna

Research output: Contribution to journalArticlepeer-review

Abstract

In Parkinson's disease (PD) patients, beta (β) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether β and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether β- and γ-tACS on M1 modulate bradykinesia in PD patients by analyzing the kinematic features of repetitive finger tapping, including movement amplitude, velocity, and sequence effect, recorded during β-, γ-, and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects (HS). In patients, movement velocity significantly worsened during β-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, SAI decreased (reduced inhibition) during β-tACS and SICI decreased during both γ- and β-tACS in PD. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of SICI modulation during β- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical β and γ oscillations are relevant in the pathophysiology of bradykinesia in PD and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in PD.

Original languageEnglish
Pages (from-to)224-236
Number of pages12
JournalBrain : a journal of neurology
Volume145
Issue number1
DOIs
Publication statusPublished - Mar 29 2022

Fingerprint

Dive into the research topics of 'Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease'. Together they form a unique fingerprint.

Cite this