TY - JOUR
T1 - Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration
T2 - Evidence from structural and proteomic analysis
AU - Salanova, Michele
AU - Gelfi, Cecilia
AU - Moriggi, Manuela
AU - Vasso, Michele
AU - Viganò, Agnese
AU - Minafra, Luigi
AU - Bonifacio, Gaetano
AU - Schiffl, Gudrun
AU - Gutsmann, Martina
AU - Felsenberg, Dieter
AU - Cerretelli, Paolo
AU - Blottner, Dieter
PY - 2014/11/1
Y1 - 2014/11/1
N2 - In the present bed rest (BR) study, 23 volunteers were randomized into 3 subgroups: 60 d BR control (Ctr); BR with resistive exercise (RE; lowerlimb load); and resistive vibration exercise (RVE; RE with superimposed vibration). The aim was to analyze by confocal and electron microscopy the effects of vibration on myofibril and filament integrity in soleus (Sol) and vastus lateralis (VL) muscle; differential proteomics of contractile, cytoskeletal, and costameric proteins (TN-C, ROCK1, and FAK); and expression of PGC1α and atrophy-related master genes MuRF1 and MuRF2. RVE (but not RE) preserved myofiber size and phenotype in Sol and VL by overexpressing MYBPC1 (42%, P≥0.01), WDR1 (39%, P≥0.01), sarcosin (84%, P≥0.01), and CKM (20%, P≥0.01) and prevented myofibrillar ultrastructural damage as detectable by MuRF1 expression. In Sol, cytoskeletal and contractile proteins were normalized by RVE, and TN-C increased (59%, P≥0.01); the latter also with RE (108%, P≥0.01). In VL, the outcomes of both RVE (acting on sarcosin and desmin) and RE (by way of troponinT-slow and MYL2) were similar. RVE appears to be a highly efficient countermeasure protocol against muscle atrophy and ultrastructural and molecular dysregulation induced by chronic disuse.-Salanova, M., Gelfi, C., Moriggi, M., Vasso, M., Viganò, A., Minafra, L., Bonifacio, G., Schiffl, G., Gutsmann, M., Felsenberg, D., Cerretelli, P., Blottner, D. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis.
AB - In the present bed rest (BR) study, 23 volunteers were randomized into 3 subgroups: 60 d BR control (Ctr); BR with resistive exercise (RE; lowerlimb load); and resistive vibration exercise (RVE; RE with superimposed vibration). The aim was to analyze by confocal and electron microscopy the effects of vibration on myofibril and filament integrity in soleus (Sol) and vastus lateralis (VL) muscle; differential proteomics of contractile, cytoskeletal, and costameric proteins (TN-C, ROCK1, and FAK); and expression of PGC1α and atrophy-related master genes MuRF1 and MuRF2. RVE (but not RE) preserved myofiber size and phenotype in Sol and VL by overexpressing MYBPC1 (42%, P≥0.01), WDR1 (39%, P≥0.01), sarcosin (84%, P≥0.01), and CKM (20%, P≥0.01) and prevented myofibrillar ultrastructural damage as detectable by MuRF1 expression. In Sol, cytoskeletal and contractile proteins were normalized by RVE, and TN-C increased (59%, P≥0.01); the latter also with RE (108%, P≥0.01). In VL, the outcomes of both RVE (acting on sarcosin and desmin) and RE (by way of troponinT-slow and MYL2) were similar. RVE appears to be a highly efficient countermeasure protocol against muscle atrophy and ultrastructural and molecular dysregulation induced by chronic disuse.-Salanova, M., Gelfi, C., Moriggi, M., Vasso, M., Viganò, A., Minafra, L., Bonifacio, G., Schiffl, G., Gutsmann, M., Felsenberg, D., Cerretelli, P., Blottner, D. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis.
KW - Atrophy
KW - Bed rest
KW - Countermeasures
KW - Protein expression
KW - Ultrastructure
UR - http://www.scopus.com/inward/record.url?scp=84912096410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84912096410&partnerID=8YFLogxK
U2 - 10.1096/fj.14-252825
DO - 10.1096/fj.14-252825
M3 - Article
C2 - 25122557
AN - SCOPUS:84912096410
SN - 0892-6638
VL - 28
SP - 4748
EP - 4763
JO - FASEB Journal
JF - FASEB Journal
IS - 11
ER -