TY - JOUR
T1 - Cytokines (interferon-γ and tumor necrosis factor-α)-induced nuclear factor-κB activation and chemokine (C-X-C motif) ligand 10 release in Graves disease and ophthalmopathy are modulated by pioglitazone
AU - Antonelli, Alessandro
AU - Ferrari, Silvia Martina
AU - Fallahi, Poupak
AU - Piaggi, Simona
AU - Paolicchi, Aldo
AU - Franceschini, Stefano Sellari
AU - Salvi, Mario
AU - Ferrannini, Ele
PY - 2011/2
Y1 - 2011/2
N2 - Until now, the following are not known: (1) the mechanisms underlying the induction of chemokine (C-X-C motif) ligand 10 (CXCL10) secretion by cytokines in thyrocytes; (2) if pioglitazone is able, like rosiglitazone, to inhibit the interferon (IFN)-γ-induced chemokine expression in Graves disease (GD) or ophthalmopathy (GO); and (3) the mechanisms underlying the inhibition by thiazolidinediones of the cytokines-induced CXCL10 release in thyrocytes. The aims of this study were (1) to study the mechanisms underlying the induction of CXCL10 secretion by cytokines in GD thyrocytes; (2) to test the effect of pioglitazone on IFNγ-inducible CXCL10 secretion in primary thyrocytes, orbital fibroblasts, and preadipocytes from GD and GO patients; and (3) to evaluate the mechanism of action of thiazolidinediones on nuclear factor (NF)-κB activation. The results of the study (1) demonstrate that IFNγ + TNFα enhanced the DNA binding activity of NF-κB in GD thyrocytes, in association with the release of CXCL10; (2) show that pioglitazone exerts a dose-dependent inhibition on IFNγ + TNFα-induced CXCL10 secretion in thyrocytes, orbital fibroblasts, and preadipocytes, similar to the effect observed with rosiglitazone; and (3) demonstrate that thiazolidinediones (pioglitazone and rosiglitazone) act by reducing the IFNγ + TNFα activation of NF-κB in Graves thyrocytes. To the best of our knowledge, this is the first study showing that cytokines are able to activate NF-κB in Graves thyrocytes and a parallel inhibitory effect of pioglitazone both on CXCL10 chemokine secretion and NF-κB activation. Future studies will be needed to verify if new targeted peroxisome proliferator-activated receptor-γ activators may be able to exert the anti-inflammatory effects without the risk of expanding retrobulbar fat mass.
AB - Until now, the following are not known: (1) the mechanisms underlying the induction of chemokine (C-X-C motif) ligand 10 (CXCL10) secretion by cytokines in thyrocytes; (2) if pioglitazone is able, like rosiglitazone, to inhibit the interferon (IFN)-γ-induced chemokine expression in Graves disease (GD) or ophthalmopathy (GO); and (3) the mechanisms underlying the inhibition by thiazolidinediones of the cytokines-induced CXCL10 release in thyrocytes. The aims of this study were (1) to study the mechanisms underlying the induction of CXCL10 secretion by cytokines in GD thyrocytes; (2) to test the effect of pioglitazone on IFNγ-inducible CXCL10 secretion in primary thyrocytes, orbital fibroblasts, and preadipocytes from GD and GO patients; and (3) to evaluate the mechanism of action of thiazolidinediones on nuclear factor (NF)-κB activation. The results of the study (1) demonstrate that IFNγ + TNFα enhanced the DNA binding activity of NF-κB in GD thyrocytes, in association with the release of CXCL10; (2) show that pioglitazone exerts a dose-dependent inhibition on IFNγ + TNFα-induced CXCL10 secretion in thyrocytes, orbital fibroblasts, and preadipocytes, similar to the effect observed with rosiglitazone; and (3) demonstrate that thiazolidinediones (pioglitazone and rosiglitazone) act by reducing the IFNγ + TNFα activation of NF-κB in Graves thyrocytes. To the best of our knowledge, this is the first study showing that cytokines are able to activate NF-κB in Graves thyrocytes and a parallel inhibitory effect of pioglitazone both on CXCL10 chemokine secretion and NF-κB activation. Future studies will be needed to verify if new targeted peroxisome proliferator-activated receptor-γ activators may be able to exert the anti-inflammatory effects without the risk of expanding retrobulbar fat mass.
UR - http://www.scopus.com/inward/record.url?scp=78751645777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78751645777&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2010.02.002
DO - 10.1016/j.metabol.2010.02.002
M3 - Article
C2 - 20206950
AN - SCOPUS:78751645777
SN - 0026-0495
VL - 60
SP - 277
EP - 283
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
IS - 2
ER -