Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant staphylococcus aureus

F. Bugli, M. Cacaci, V. Palmieri, R. Di Santo, R. Torelli, G. Ciasca, M. Di Vito, A. Vitali, C. Conti, M. Sanguinetti, M. De Spirito, M. Papi

Research output: Contribution to journalArticlepeer-review


Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for serious hospital infections worldwide and represents a global public health problem. Curcumin, the major constituent of turmeric, is effective against MRSA but only at cytotoxic concentrations or in combination with antibiotics. The major issue in curcumin-based therapies is the poor solubility of this hydrophobic compound and the cytotoxicity at high doses. In this paper, we describe the efficacy of a composite nanoparticle made of curcumin (CU) and graphene oxide (GO), hereafter GOCU, in MRSA infection treatment. GO is a nanomaterial with a large surface area and high drug-loading capacity. GO has also antibacterial properties due mainly to a mechanical cutting of the bacterial membranes. For this physical mechanism of action, microorganisms are unlikely to develop resistance against this nanomaterial. In this work, we report the capacity of GO to support and stabilize curcumin molecules in a water environment and we demonstrate the efficacy of GOCU against MRSA at a concentration below 2 mg ml21. Further, GOCU displays low toxicity on fibroblasts cells and avoids haemolysis of red blood cells. Our results indicate that GOCU is a promising nanomaterial against antibiotic-resistant MRSA.

Original languageEnglish
Article number20170059
JournalInterface Focus
Issue number3
Publication statusPublished - Jun 6 2018


  • Curcumin
  • Graphene oxide
  • Nosocomial infections
  • Staphylococcus aureus MRSA
  • Targeted therapy

ASJC Scopus subject areas

  • Biotechnology
  • Biophysics
  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant staphylococcus aureus'. Together they form a unique fingerprint.

Cite this