Abstract
Coarctation of aorta (CoA) is a narrowing of the aorta leading to a pressure gradient (ΔP) across the coarctation, increased afterload and reduced peripheral perfusion pressures. Indication to invasive treatment is based on values of maximal (systolic) trans-coarctation ΔP. A computational fluid dynamic (CFD) approach is herein presented for the non-invasive haemodynamic assessment of ΔP across CoA. Patient-specific CFD simulations were created from contrast-enhanced computed tomography (CT) and appropriate flow boundary conditions. Computed ΔP was validated with invasive intravascular trans-CoA pressure measurements. Haemodynamic indices, including pressure loss coefficient (PLc), time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI), were also quantified. CFD-estimated ΔP values were comparable to the invasive ones. Moreover, the aorta proximal to CoA was exposed to altered TAWSS and OSI suggesting hypertension. PLc was found as a further geometric marker of CoA severity. Finally, CFD-estimated ΔP confirmed a significant reduction after percutaneous balloon dilatation and stenting of the CoA in one patient (e.g. from ΔP∼52 mmHg to ΔP∼3 mmHg). The validation of the ΔP computations with catheterisation measurements suggests that CFD simulation, based on CT-derived anatomical data, is a useful tool to readily quantify CoA severity.
Original language | English |
---|---|
Pages (from-to) | 1066-1071 |
Number of pages | 6 |
Journal | Computer Methods in Biomechanics and Biomedical Engineering |
Volume | 18 |
Issue number | 10 |
DOIs | |
Publication status | Published - Jul 27 2015 |
Keywords
- coarctation of aorta
- computational fluid dynamics
- contrast-enhanced computed tomography
- pressure gradient
ASJC Scopus subject areas
- Bioengineering
- Biomedical Engineering
- Computer Science Applications
- Human-Computer Interaction