Abstract
Original language | English |
---|---|
Pages (from-to) | 459-469 |
Number of pages | 11 |
Journal | Cell Biology and Toxicology |
Volume | 34 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Cancer stem cells
- Cetuximab
- Colorectal cancer
- Personalized therapy
- Spheroid cultures
Fingerprint
Dive into the research topics of 'Colorectal cancer spheroid biobanks: Multi-level approaches to drug sensitivity studies'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Colorectal cancer spheroid biobanks: Multi-level approaches to drug sensitivity studies. / De Angelis, M.L.; Bruselles, A.; Francescangeli, F. et al.
In: Cell Biology and Toxicology, Vol. 34, No. 6, 2018, p. 459-469.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Colorectal cancer spheroid biobanks: Multi-level approaches to drug sensitivity studies
AU - De Angelis, M.L.
AU - Bruselles, A.
AU - Francescangeli, F.
AU - Pucilli, F.
AU - Vitale, S.
AU - Zeuner, A.
AU - Tartaglia, M.
AU - Baiocchi, M.
N1 - Export Date: 11 April 2019 CODEN: CBTOE Correspondence Address: Baiocchi, M.; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Italy; email: marta.baiocchi@iss.it References: Allen, J.E., Gallant, J.N., Dicker, D.T., Amin, S., Irby, R.B., Sharma, A.K., The Akt inhibitor ISC-4 synergizes with cetuximab in 5-FU-resistant colon cancer (2013) Plos One, 8 (3); Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer (2011) Cancer Discov, 1 (6), pp. 508-523; Cheng, L., Xia, Z., Bian, X., Li, G., Hu, J., Cao, Y., Combination of cetuximab and PP242 synergistically suppress the progression of wild-type KRAS colorectal carcinoma (2015) Onco Targets Ther, 8, pp. 3185-3192; Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples (2013) Nat Biotechnol, 31 (3), pp. 213-219; Cingolani, P., Platts, A., Wang Le, L., Coon, M., Nguyen, T., Wang, L., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 (2012) Fly (Austin), 6 (2), pp. 80-92; Cortes-Ciriano, I., Lee, S., Park, W.Y., Kim, T.M., Park, P.J., A molecular portrait of microsatellite instability across multiple cancers (2017) Nat Commun, 8, p. 15180; Cullen, P.J., Lockyer, P.J., Integration of calcium and Ras signalling (2002) Nat Rev Mol Cell Biol, 3 (5), pp. 339-348; De Angelis, M.L., Zeuner, A., Policicchio, E., Russo, G., Bruselles, A., Signore, M., Cancer stem cell-based models of colorectal cancer reveal molecular determinants of therapy resistance (2016) Stem Cells Transl Med, 5 (4), pp. 511-523; De Angelis, M.L., De Maria, R., Baiocchi, M., How to assess drug resistance in cancer stem cells (2018) Methods Mol Biol, 1692, pp. 107-115; De Roock, W., Claes, B., Bernasconi, D., De Schutter, J., Biesmans, B., Fountzilas, G., Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis (2010) Lancet Oncol, 11 (8), pp. 753-762; Depeille, P., Henricks, L.M., Van De Ven, R.A., Lemmens, E., Wang, C.Y., Matli, M., RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth (2015) Nat Cell Biol, 17 (6), pp. 804-815; Depristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., A framework for variation discovery and genotyping using next-generation DNA sequencing data (2011) Nat Genet, 43 (5), pp. 491-498; Fujii, M., Shimokawa, M., Date, S., Takano, A., Matano, M., Nanki, K., A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis (2016) Cell Stem Cell, 18 (6), pp. 827-838; Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response (2015) Nat Med, 21 (11), pp. 1318-1325; Guinney, J., Dienstmann, R., Wang, X., De Reynies, A., Schlicker, A., Soneson, C., The consensus molecular subtypes of colorectal cancer (2015) Nat Med, 21 (11), pp. 1350-1356; Hong, S., Kim, S., Kim, H.Y., Kang, M., Jang, H.H., Lee, W.S., Targeting the PI3K signaling pathway in KRAS mutant colon cancer (2016) Cancer Med, 5 (2), pp. 248-255; Isella, C., Brundu, F., Bellomo, S.E., Galimi, F., Zanella, E., Porporato, R., Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer (2017) Nat Commun, 8; Julien, S., Merino-Trigo, A., Lacroix, L., Pocard, M., Goere, D., Mariani, P., Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer (2012) Clin Cancer Res, 18 (19), pp. 5314-5328; Kim, T.M., Laird, P.W., Park, P.J., The landscape of microsatellite instability in colorectal and endometrial cancer genomes (2013) Cell, 155 (4), pp. 858-868; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25 (14), pp. 1754-1760; Liu, X., Jian, X., Boerwinkle, E., DbNSFP v2.0: A database of human non-synonymous SNVs and their functional predictions and annotations (2013) Hum Mutat., 34 (9), pp. E2393-E2402; Luraghi, P., Reato, G., Cipriano, E., Sassi, F., Orzan, F., Bigatto, V., MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors (2014) Cancer Res, 74 (6), pp. 1857-1869; Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids (2015) Nat Med, 21 (3), pp. 256-262; McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res, 20 (9), pp. 1297-1303; Mutsaers, A.J., Francia, G., Man, S., Lee, C.R., Ebos, J.M., Wu, Y., Dose-dependent increases in circulating TGF-alpha and other EGFR ligands act as pharmacodynamic markers for optimal biological dosing of cetuximab and are tumor independent (2009) Clin Cancer Res, 15 (7), pp. 2397-2405; Napolitano, S., Martini, G., Rinaldi, B., Martinelli, E., Donniacuo, M., Berrino, L., Primary and acquired resistance of colorectal cancer to anti-EGFR monoclonal antibody can be overcome by combined treatment of regorafenib with cetuximab (2015) Clin Cancer Res, 21 (13), pp. 2975-2983; Schutte, M., Risch, T., Abdavi-Azar, N., Boehnke, K., Schumacher, D., Keil, M., Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors (2017) Nat Commun, 8, p. 14262; Takahashi, N., Yamada, Y., Furuta, K., Honma, Y., Iwasa, S., Takashima, A., Serum levels of hepatocyte growth factor and epiregulin are associated with the prognosis on anti-EGFR antibody treatment in KRAS wild-type metastatic colorectal cancer (2014) Br J Cancer, 110 (11), pp. 2716-2727; Tanabe, M., Kanehisa, M., Using the KEGG database resource (2012) Curr Protoc Bioinformatics, , Chapter 1, Unit1 12; Troiani, T., Napolitano, S., Vitagliano, D., Morgillo, F., Capasso, A., Sforza, V., Primary and acquired resistance of colorectal cancer cells to anti-EGFR antibodies converge on MEK/ERK pathway activation and can be overcome by combined MEK/EGFR inhibition (2014) Clin Cancer Res, 20 (14), pp. 3775-3786; Umar, A., Boland, C.R., Terdiman, J.P., Syngal, S., De La Chapelle, A., Ruschoff, J., Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability (2004) J Natl Cancer Inst, 96 (4), pp. 261-268; Van De Wetering, M., Francies, H.E., Francis, J.M., Bounova, G., Iorio, F., Pronk, A., Prospective derivation of a living organoid biobank of colorectal cancer patients (2015) Cell, 161 (4), pp. 933-945; Vigil, D., Cherfils, J., Rossman, K.L., Der, C.J., Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? (2010) Nat Rev Cancer, 10 (12), pp. 842-857; Vilar, E., Gruber, S.B., Microsatellite instability in colorectal cancer-the stable evidence (2010) Nat Rev Clin Oncol, 7 (3), pp. 153-162; Zhang, F.Q., Yang, W.T., Duan, S.Z., Xia, Y.C., Zhu, R.Y., Chen, Y.B., JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor (2015) Oncotarget, 6 (16), pp. 14329-14343
PY - 2018
Y1 - 2018
N2 - Biobanking of molecularly characterized colorectal cancer stem cells (CSCs) generated from individual patients and growing as spheroids in defined serum-free media offer a fast, feasible, and multi-level approach for the screening of targeted therapies and drug resistance molecular studies. By combining in vitro and in vivo analyses of cetuximab efficacy with genetic data on an ongoing collection of stem cell-enriched spheroids, we describe the identification and preliminary characterization of microsatellite stable (MSS) CSCs that, despite the presence of the KRAS (G12D) mutation, display epidermal growth factor (EGF)-dependent growth and are strongly inhibited by anti-EGF-receptor (EGFR) treatment. In parallel, we detected an increased resistance to anti-EGFR therapy of microsatellite instable (MSI) CSC lines irrespective of KRAS mutational status. MSI CSC lines carried mutations in genes coding for proteins with a role in RAS and calcium signaling, highlighting the role of a genomically unstable context in determining anti-EGFR resistance. Altogether, these results argue for a multifactorial origin of anti-EGFR resistance that emerges as the effect of multiple events targeting direct and indirect regulators of the EGFR pathway. An improved understanding of key molecular determinants of sensitivity/resistance to EGFR inhibition will be instrumental to optimize the clinical efficacy of anti-EGFR agents, representing a further step towards personalized treatments. © Springer Science+Business Media, LLC, part of Springer Nature 2018.
AB - Biobanking of molecularly characterized colorectal cancer stem cells (CSCs) generated from individual patients and growing as spheroids in defined serum-free media offer a fast, feasible, and multi-level approach for the screening of targeted therapies and drug resistance molecular studies. By combining in vitro and in vivo analyses of cetuximab efficacy with genetic data on an ongoing collection of stem cell-enriched spheroids, we describe the identification and preliminary characterization of microsatellite stable (MSS) CSCs that, despite the presence of the KRAS (G12D) mutation, display epidermal growth factor (EGF)-dependent growth and are strongly inhibited by anti-EGF-receptor (EGFR) treatment. In parallel, we detected an increased resistance to anti-EGFR therapy of microsatellite instable (MSI) CSC lines irrespective of KRAS mutational status. MSI CSC lines carried mutations in genes coding for proteins with a role in RAS and calcium signaling, highlighting the role of a genomically unstable context in determining anti-EGFR resistance. Altogether, these results argue for a multifactorial origin of anti-EGFR resistance that emerges as the effect of multiple events targeting direct and indirect regulators of the EGFR pathway. An improved understanding of key molecular determinants of sensitivity/resistance to EGFR inhibition will be instrumental to optimize the clinical efficacy of anti-EGFR agents, representing a further step towards personalized treatments. © Springer Science+Business Media, LLC, part of Springer Nature 2018.
KW - Cancer stem cells
KW - Cetuximab
KW - Colorectal cancer
KW - Personalized therapy
KW - Spheroid cultures
U2 - 10.1007/s10565-018-9423-3
DO - 10.1007/s10565-018-9423-3
M3 - Article
SN - 0742-2091
VL - 34
SP - 459
EP - 469
JO - Cell Biology and Toxicology
JF - Cell Biology and Toxicology
IS - 6
ER -