TY - JOUR
T1 - Collagen VI myopathies
T2 - From the animal model to the clinical trial
AU - Maraldi, Nadir M.
AU - Sabatelli, Patrizia
AU - Columbaro, Marta
AU - Zamparelli, Alessandra
AU - Manzoli, Francesco A.
AU - Bernardi, Paolo
AU - Bonaldo, Paolo
AU - Merlini, Luciano
PY - 2009
Y1 - 2009
N2 - Collagen VI is an ECM protein which forms a prominent microfibrillar network in the endomysium of skeletal muscle. Mutations in the genes coding for the three chains of collagen VI cause skeletal muscle diseases; the severe wasting Ullrich congenital muscular dystrophy (UCMD) normally present at birth, and the milder Bethlem myopathy (BM). The pathogenesis of both collagen VI myopathies was unknown until 2003. Our group, utilizing Col6a1 deficient mice, discovered a latent mitochondrial dysfunction that caused increased apoptosis in muscle cells. These effects could be reverted by incubating Col6a1 null muscle fibres with cyclosporin A (CsA), an inhibitor of the mitochondrial permeability pore; more interestingly, the treatment of Col6a1 null mice with CoA rescued the muscle phenotype in vivo. These findings demonstrated an unexpected collagen VI/mitochondrial connection as the basis for the UCMD and BM pathogenesis and suggested a strategy for a possible pharmacological treatment of the diseases. This was assessed by demonstrating that muscle biopsies from patients with UCMD showed an abnormal mitochondrial depolarization and that treatment with CsA normalized the mitochondrial phenotype. In this study we report the results of an open pilot trial of four UCMD and one BM patients, representing a range of collagen VI deficiency and having mutations in three of the collagen VI genes. As determined in muscle biopsies prior to treatment, all patients displayed mitochondrial dysfunction and muscle fibres showed an increased frequency of apoptosis. When patients were treated for 1 month with a low daily dose of CsA, primary muscle cell cultures of biopsies obtained at the end of the treatment showed a decreased apoptosis and increased immunohistochemical signs of muscle fibre regeneration. These results confirm that the pathogenic mechanism found in Col6a1 deficient mice also plays a crucial role in hereditary muscle diseases in human, and suggest that targeted treatment of these mitochondrial defects in patients with UCMD and BM may be effective in preventing and/or reverting muscle alterations. It is also important to consider that desensitization of the permeability transition pore by CsA occurs independently of calcineurin inhibition; because a CsA derivative that has no immunosuppressive activity appears to be as effective as the parent molecule, long-term trials should be designed to prevent irreversible muscle damages in young patients affected by collagen VI myopathies, without exposing them to infective risks.
AB - Collagen VI is an ECM protein which forms a prominent microfibrillar network in the endomysium of skeletal muscle. Mutations in the genes coding for the three chains of collagen VI cause skeletal muscle diseases; the severe wasting Ullrich congenital muscular dystrophy (UCMD) normally present at birth, and the milder Bethlem myopathy (BM). The pathogenesis of both collagen VI myopathies was unknown until 2003. Our group, utilizing Col6a1 deficient mice, discovered a latent mitochondrial dysfunction that caused increased apoptosis in muscle cells. These effects could be reverted by incubating Col6a1 null muscle fibres with cyclosporin A (CsA), an inhibitor of the mitochondrial permeability pore; more interestingly, the treatment of Col6a1 null mice with CoA rescued the muscle phenotype in vivo. These findings demonstrated an unexpected collagen VI/mitochondrial connection as the basis for the UCMD and BM pathogenesis and suggested a strategy for a possible pharmacological treatment of the diseases. This was assessed by demonstrating that muscle biopsies from patients with UCMD showed an abnormal mitochondrial depolarization and that treatment with CsA normalized the mitochondrial phenotype. In this study we report the results of an open pilot trial of four UCMD and one BM patients, representing a range of collagen VI deficiency and having mutations in three of the collagen VI genes. As determined in muscle biopsies prior to treatment, all patients displayed mitochondrial dysfunction and muscle fibres showed an increased frequency of apoptosis. When patients were treated for 1 month with a low daily dose of CsA, primary muscle cell cultures of biopsies obtained at the end of the treatment showed a decreased apoptosis and increased immunohistochemical signs of muscle fibre regeneration. These results confirm that the pathogenic mechanism found in Col6a1 deficient mice also plays a crucial role in hereditary muscle diseases in human, and suggest that targeted treatment of these mitochondrial defects in patients with UCMD and BM may be effective in preventing and/or reverting muscle alterations. It is also important to consider that desensitization of the permeability transition pore by CsA occurs independently of calcineurin inhibition; because a CsA derivative that has no immunosuppressive activity appears to be as effective as the parent molecule, long-term trials should be designed to prevent irreversible muscle damages in young patients affected by collagen VI myopathies, without exposing them to infective risks.
UR - http://www.scopus.com/inward/record.url?scp=66449101938&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66449101938&partnerID=8YFLogxK
U2 - 10.1016/j.advenzreg.2008.12.009
DO - 10.1016/j.advenzreg.2008.12.009
M3 - Article
C2 - 19162063
AN - SCOPUS:66449101938
SN - 0065-2571
VL - 49
SP - 197
EP - 211
JO - Advances in Enzyme Regulation
JF - Advances in Enzyme Regulation
IS - 1
ER -