Clock genes, inflammation and the immune system—Implications for diabetes, obesity and neurodegenerative diseases

Elaine Vieira, Gerardo Gabriel Mirizio, Geovana Reichert Barin, Rosângela Vieira de Andrade, Nidah Fawzi Said Nimer, Lucia La Sala

Research output: Contribution to journalReview articlepeer-review

Abstract

Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic β cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic β cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.

Original languageEnglish
Article number9743
Pages (from-to)1-8
Number of pages8
JournalInternational Journal of Molecular Sciences
Volume21
Issue number24
DOIs
Publication statusPublished - Dec 2 2020

Keywords

  • Clock genes
  • Diabetes
  • Inflammation
  • Neurodegenerative diseases
  • Obesity

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Clock genes, inflammation and the immune system—Implications for diabetes, obesity and neurodegenerative diseases'. Together they form a unique fingerprint.

Cite this