Circuit compliance compensation in lung protective ventilation

Grazia Maria Pia Masselli, Sergio Silvestri, Salvatore Andrea Sciuto, Paolo Cappa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

Original languageEnglish
Title of host publicationAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Pages5603-5606
Number of pages4
DOIs
Publication statusPublished - 2006
Event28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06 - New York, NY, United States
Duration: Aug 30 2006Sept 3 2006

Other

Other28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06
Country/TerritoryUnited States
CityNew York, NY
Period8/30/069/3/06

ASJC Scopus subject areas

  • Bioengineering

Fingerprint

Dive into the research topics of 'Circuit compliance compensation in lung protective ventilation'. Together they form a unique fingerprint.

Cite this