TY - JOUR
T1 - Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin
AU - Tedesco, Martina
AU - Giannese, Francesca
AU - Lazarević, Dejan
AU - Giansanti, Valentina
AU - Rosano, Dalia
AU - Monzani, Silvia
AU - Catalano, Irene
AU - Grassi, Elena
AU - Zanella, Eugenia R.
AU - Botrugno, Oronza A.
AU - Morelli, Leonardo
AU - Panina Bordignon, Paola
AU - Caravagna, Giulio
AU - Bertotti, Andrea
AU - Martino, Gianvito
AU - Aldrighetti, Luca
AU - Pasqualato, Sebastiano
AU - Trusolino, Livio
AU - Cittaro, Davide
AU - Tonon, Giovanni
N1 - Funding Information:
We thank all the members of the COSR and Tonon laboratory for discussions, support and critical reading of the manuscript. We are grateful to E. Brambilla and F. Ruffini for preparation of the iPSCs and NPCs and A. Mira for assistance in the preparation of the organoids. We would like to thank S. de Pretis for the thoughtful discussions about chromatin velocity. We are grateful to G. Bucci for providing raw exome sequencing data and P. Dellabona for the coordination of the metastatic colon cancer sample collection and analysis. We also thank D. Gabellini, M. E. Bianchi, A. Agresti and S. Biffo for helpful discussions and for reviewing the manuscript. A.B. and L.T. are members of the EurOPDX Consortium. This work was partially supported by the Italian Ministry of Health with Ricerca Corrente and 5???1000 funds (S.M. and S.P.), by Associazione Italiana per la Ricerca sul Cancro (AIRC) investigator grants 20697 (to A.B.) and 22802 (to L.T.), AIRC 5???1000 grant 21091 (to A.B. and L.T.), AIRC/CRUK/FC AECC Accelerator Award 22795 (to L.T.), European Research Council Consolidator Grant 724748 BEAT (to A.B.), H2020 grant agreement 754923 COLOSSUS (to L.T.), H2020 INFRAIA grant agreement 731105 EDIReX (to A.B.), Fondazione Piemontese per la Ricerca sul Cancro-ONLUS, 5???1000 Ministero della Salute 2014, 2015 and 2016 (to L.T.), AIRC investigator grants (to G.T.) and by the Italian Ministry of Health with 5???1000 funds, Fiscal Year 2014 (to G.T.), AIRC 5???1000 ID 22737 (to G.T.) and the AIRC/CRUK/FC AECC Accelerator Award ?Single Cell Cancer Evolution in the Clinic? A26815 (AIRC number program 2279) (to G.T.).
Funding Information:
We thank all the members of the COSR and Tonon laboratory for discussions, support and critical reading of the manuscript. We are grateful to E. Brambilla and F. Ruffini for preparation of the iPSCs and NPCs and A. Mira for assistance in the preparation of the organoids. We would like to thank S. de Pretis for the thoughtful discussions about chromatin velocity. We are grateful to G. Bucci for providing raw exome sequencing data and P. Dellabona for the coordination of the metastatic colon cancer sample collection and analysis. We also thank D. Gabellini, M. E. Bianchi, A. Agresti and S. Biffo for helpful discussions and for reviewing the manuscript. A.B. and L.T. are members of the EurOPDX Consortium. This work was partially supported by the Italian Ministry of Health with Ricerca Corrente and 5×1000 funds (S.M. and S.P.), by Associazione Italiana per la Ricerca sul Cancro (AIRC) investigator grants 20697 (to A.B.) and 22802 (to L.T.), AIRC 5×1000 grant 21091 (to A.B. and L.T.), AIRC/CRUK/FC AECC Accelerator Award 22795 (to L.T.), European Research Council Consolidator Grant 724748 BEAT (to A.B.), H2020 grant agreement 754923 COLOSSUS (to L.T.), H2020 INFRAIA grant agreement 731105 EDIReX (to A.B.), Fondazione Piemontese per la Ricerca sul Cancro-ONLUS, 5×1000 Ministero della Salute 2014, 2015 and 2016 (to L.T.), AIRC investigator grants (to G.T.) and by the Italian Ministry of Health with 5×1000 funds, Fiscal Year 2014 (to G.T.), AIRC 5×1000 ID 22737 (to G.T.) and the AIRC/CRUK/FC AECC Accelerator Award ‘Single Cell Cancer Evolution in the Clinic’ A26815 (AIRC number program 2279) (to G.T.).
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2022/2
Y1 - 2022/2
N2 - Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.
AB - Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.
UR - http://www.scopus.com/inward/record.url?scp=85116848474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116848474&partnerID=8YFLogxK
U2 - 10.1038/s41587-021-01031-1
DO - 10.1038/s41587-021-01031-1
M3 - Article
C2 - 34635836
AN - SCOPUS:85116848474
SN - 1087-0156
VL - 40
SP - 235
EP - 244
JO - Biotechnology
JF - Biotechnology
IS - 2
ER -