Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome

Chiara La Morgia, Alessandra Maresca, Giulia Amore, Laura Ludovica Gramegna, Michele Carbonelli, Emanuela Scimonelli, Alberto Danese, Simone Patergnani, Leonardo Caporali, Francesca Tagliavini, Valentina Del Dotto, Mariantonietta Capristo, Federico Sadun, Piero Barboni, Giacomo Savini, Stefania Evangelisti, Claudio Bianchini, Maria Lucia Valentino, Rocco Liguori, Caterina TononCarlotta Giorgi, Paolo Pinton, Raffaele Lodi, Valerio Carelli

Research output: Contribution to journalArticlepeer-review


Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria.

Original languageEnglish
Article number4785
JournalScientific Reports
Issue number1
Publication statusPublished - Dec 1 2020

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome'. Together they form a unique fingerprint.

Cite this