TY - JOUR
T1 - Altered intracellular and extracellular signaling leads to impaired T-cell functions in ADA-SCID patients
AU - Cassani, Barbara
AU - Mirolo, Massimiliano
AU - Cattaneo, Federica
AU - Benninghoff, Ulrike
AU - Hershfield, Michael
AU - Carlucci, Filippo
AU - Tabucchi, Antonella
AU - Bordignon, Claudio
AU - Roncarolo, Maria Grazia
AU - Aiuti, Alessandro
PY - 2008/4/15
Y1 - 2008/4/15
N2 - Mutations in the adenosine deaminase (ADA) gene are responsible for a form of severe combined immunodeficiency (SCID) caused by the lymphotoxic accumulation of ADA substrates, adenosine and 2′-deoxy-adenosine. The molecular mechanisms underlying T-cell dysfunction in humans remain to be elucidated. Here, we show that CD4+ T cells from ADA-SCID patients have severely compromised TCR/CD28-driven proliferation and cytokine production, both at the transcriptional and protein levels. Such an impairment is associated with an intrinsically reduced ZAP-70 phosphorylation, Ca 2+ flux, and ERK1/2 signaling and to defective transcriptional events linked to CREB and NF-κB. Moreover, exposure to 2′deoxy-adenosine results in a stronger inhibition of T-cell activation, mediated by the aberrant A 2A adenosine receptor signaling engagement and PKA hyperactiva-tion, or in a direct apoptotic effect at higher doses. Conversely, in T cells isolated from patients after gene therapy with retrovirally transduced hematopoietic stem/progenitor cells, the biochemical events after TCR triggering occur properly, leading to restored effector functions and normal sensitivity to apoptosis. Overall, our findings provide a better understanding of the pathogenesis of the immune defects associated with an altered purine metabolism and confirm that ADA gene transfer is an efficacious treatment for ADA-SCID. The trials in this study are enrolled at www.ClinicalTrials. qov as #NCT00598481 and #NCT0059978.
AB - Mutations in the adenosine deaminase (ADA) gene are responsible for a form of severe combined immunodeficiency (SCID) caused by the lymphotoxic accumulation of ADA substrates, adenosine and 2′-deoxy-adenosine. The molecular mechanisms underlying T-cell dysfunction in humans remain to be elucidated. Here, we show that CD4+ T cells from ADA-SCID patients have severely compromised TCR/CD28-driven proliferation and cytokine production, both at the transcriptional and protein levels. Such an impairment is associated with an intrinsically reduced ZAP-70 phosphorylation, Ca 2+ flux, and ERK1/2 signaling and to defective transcriptional events linked to CREB and NF-κB. Moreover, exposure to 2′deoxy-adenosine results in a stronger inhibition of T-cell activation, mediated by the aberrant A 2A adenosine receptor signaling engagement and PKA hyperactiva-tion, or in a direct apoptotic effect at higher doses. Conversely, in T cells isolated from patients after gene therapy with retrovirally transduced hematopoietic stem/progenitor cells, the biochemical events after TCR triggering occur properly, leading to restored effector functions and normal sensitivity to apoptosis. Overall, our findings provide a better understanding of the pathogenesis of the immune defects associated with an altered purine metabolism and confirm that ADA gene transfer is an efficacious treatment for ADA-SCID. The trials in this study are enrolled at www.ClinicalTrials. qov as #NCT00598481 and #NCT0059978.
UR - http://www.scopus.com/inward/record.url?scp=43249112042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43249112042&partnerID=8YFLogxK
U2 - 10.1182/blood-2007-05-092429
DO - 10.1182/blood-2007-05-092429
M3 - Article
C2 - 18218852
AN - SCOPUS:43249112042
SN - 0006-4971
VL - 111
SP - 4209
EP - 4219
JO - Blood
JF - Blood
IS - 8
ER -