TY - JOUR
T1 - Adherence and intracellular survival within human macrophages of Enterococcus faecalis isolates from coastal marine sediment
AU - Sabatino, Raffaella
AU - Di Cesare, Andrea
AU - Pasquaroli, Sonia
AU - Vignaroli, Carla
AU - Citterio, Barbara
AU - Amiri, Mehdi
AU - Rossi, Luigia
AU - Magnani, Mauro
AU - Mauro, Alessandro
AU - Biavasco, Francesca
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.
AB - Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.
KW - Adhesion
KW - Enterococcus faecalis
KW - Internalization
KW - Macrophages
UR - http://www.scopus.com/inward/record.url?scp=84940452011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940452011&partnerID=8YFLogxK
U2 - 10.1016/j.micinf.2015.06.001
DO - 10.1016/j.micinf.2015.06.001
M3 - Article
C2 - 26079735
AN - SCOPUS:84940452011
SN - 1286-4579
VL - 17
SP - 660
EP - 664
JO - Microbes and Infection
JF - Microbes and Infection
IS - 9
ER -