TY - JOUR
T1 - A quick, simple method for detecting circulating fluorescent advanced glycation end-products
T2 - Correlation with in vitro and in vivo non-enzymatic glycation
AU - Villa, Marika
AU - Parravano, Mariacristina
AU - Micheli, Arianna
AU - Gaddini, Lucia
AU - Matteucci, Andrea
AU - Mallozzi, Cinzia
AU - Facchiano, Francesco
AU - Malchiodi-Albedi, Fiorella
AU - Pricci, Flavia
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Objective Advanced glycation end-products (AGEs) constitute a highly heterogeneous family of compounds, relevant in the pathogenesis of diabetic complications, which could represent efficient biomarkers of disease progression and drug response. Unfortunately, due to their chemical heterogeneity, no method has been validated to faithfully monitor their levels in the course of the disease. In this study, we refine a procedure to quantitatively analyze fluorescent AGEs (fAGEs), a subset considered remarkably representative of the entire AGE family, and measure them in in vitro glycated BSA (gBSA) and in plasma and vitreous of diabetic rats, for testing its use to possibly quantify circulating AGEs in patients, as markers of metabolic control. Methods fAGE levels were evaluated by spectrofluorimetric analysis in in vitro and in vivo experimental models. BSA was glycated in vitro with increasing D-glucose concentrations for a fixed time or with a fixed D-glucose concentration for increasing time. In in vivo experiments, streptozotocin-induced diabetic rats were studied at 1, 3, 6 and 12 weeks to analyze plasma and vitreous. To confirm the presence of AGEs in our models, non-diabetic rat retinal explants were exposed to high glucose (HG), to reproduce short-term effects, or in vitro gBSA, to reproduce long-term effects of elevated glucose concentrations. Rat retinal explants and diabetic retinal tissues were evaluated for the receptor for advanced glycation end-product (RAGE) by Western blot analysis. Results In in vitro experiments, fluorescence emission showed glucose concentration- and time-dependent increase of fAGEs in gBSA (p ≤ 0.05). In streptozotocin-induced diabetic rats, fAGE in plasma and vitrei showed an increase at 6 (p ≤ 0.005) and 12 (p ≤ 0.05) weeks of diabetes, with respect to control. RAGE was time-dependently upregulated in retinas incubated with gBSA, but not with HG, and in diabetic retinal tissue, substantiating exposure to AGEs. Conclusions Applying the proposed technique, we could show that fAGEs levels increase with glucose concentration and time of exposure in vitro. Furthermore, in diabetic rats, it showed that circulating fAGEs are similarly upregulated as those in vitreous, suggesting a correlation between circulating and tissue AGEs. These results support the use of this method as a simple and reliable test to measure circulating fAGEs and monitor diabetes progression.
AB - Objective Advanced glycation end-products (AGEs) constitute a highly heterogeneous family of compounds, relevant in the pathogenesis of diabetic complications, which could represent efficient biomarkers of disease progression and drug response. Unfortunately, due to their chemical heterogeneity, no method has been validated to faithfully monitor their levels in the course of the disease. In this study, we refine a procedure to quantitatively analyze fluorescent AGEs (fAGEs), a subset considered remarkably representative of the entire AGE family, and measure them in in vitro glycated BSA (gBSA) and in plasma and vitreous of diabetic rats, for testing its use to possibly quantify circulating AGEs in patients, as markers of metabolic control. Methods fAGE levels were evaluated by spectrofluorimetric analysis in in vitro and in vivo experimental models. BSA was glycated in vitro with increasing D-glucose concentrations for a fixed time or with a fixed D-glucose concentration for increasing time. In in vivo experiments, streptozotocin-induced diabetic rats were studied at 1, 3, 6 and 12 weeks to analyze plasma and vitreous. To confirm the presence of AGEs in our models, non-diabetic rat retinal explants were exposed to high glucose (HG), to reproduce short-term effects, or in vitro gBSA, to reproduce long-term effects of elevated glucose concentrations. Rat retinal explants and diabetic retinal tissues were evaluated for the receptor for advanced glycation end-product (RAGE) by Western blot analysis. Results In in vitro experiments, fluorescence emission showed glucose concentration- and time-dependent increase of fAGEs in gBSA (p ≤ 0.05). In streptozotocin-induced diabetic rats, fAGE in plasma and vitrei showed an increase at 6 (p ≤ 0.005) and 12 (p ≤ 0.05) weeks of diabetes, with respect to control. RAGE was time-dependently upregulated in retinas incubated with gBSA, but not with HG, and in diabetic retinal tissue, substantiating exposure to AGEs. Conclusions Applying the proposed technique, we could show that fAGEs levels increase with glucose concentration and time of exposure in vitro. Furthermore, in diabetic rats, it showed that circulating fAGEs are similarly upregulated as those in vitreous, suggesting a correlation between circulating and tissue AGEs. These results support the use of this method as a simple and reliable test to measure circulating fAGEs and monitor diabetes progression.
KW - Advanced glycation end-product
KW - Diabetes
KW - Plasma
KW - Rat
KW - Vitreous
UR - http://www.scopus.com/inward/record.url?scp=85015634397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015634397&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2017.03.004
DO - 10.1016/j.metabol.2017.03.004
M3 - Article
C2 - 28521879
AN - SCOPUS:85015634397
SN - 0026-0495
VL - 71
SP - 64
EP - 69
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
ER -